267 resultados para Communication complexity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a low-complexity algorithm SAGE-USL is presented for 3-dimensional (3-D) localization of multiple acoustic sources in a shallow ocean with non-Gaussian ambient noise, using a vertical and a horizontal linear array of sensors. In the proposed method, noise is modeled as a Gaussian mixture. Initial estimates of the unknown parameters (source coordinates, signal waveforms and noise parameters) are obtained by known/conventional methods, and a generalized expectation maximization algorithm is used to update the initial estimates iteratively. Simulation results indicate that convergence is reached in a small number of (<= 10) iterations. Initialization requires one 2-D search and one 1-D search, and the iterative updates require a sequence of 1-D searches. Therefore the computational complexity of the SAGE-USL algorithm is lower than that of conventional techniques such as 3-D MUSIC by several orders of magnitude. We also derive the Cramer-Rao Bound (CRB) for 3-D localization of multiple sources in a range-independent ocean. Simulation results are presented to show that the root-mean-square localization errors of SAGE-USL are close to the corresponding CRBs and significantly lower than those of 3-D MUSIC. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L-4,L-5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L-4,L-5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L-4,L-5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein-bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a multiple-input multiple-output (MIMO) receiver algorithm that exploits channel hardening that occurs in large MIMO channels. Channel hardening refers to the phenomenon where the off-diagonal terms of the matrix become increasingly weaker compared to the diagonal terms as the size of the channel gain matrix increases. Specifically, we propose a message passing detection (MPD) algorithm which works with the real-valued matched filtered received vector (whose signal term becomes, where is the transmitted vector), and uses a Gaussian approximation on the off-diagonal terms of the matrix. We also propose a simple estimation scheme which directly obtains an estimate of (instead of an estimate of), which is used as an effective channel estimate in the MPD algorithm. We refer to this receiver as the channel hardening-exploiting message passing (CHEMP) receiver. The proposed CHEMP receiver achieves very good performance in large-scaleMIMO systems (e.g., in systems with 16 to 128 uplink users and 128 base station antennas). For the considered large MIMO settings, the complexity of the proposed MPD algorithm is almost the same as or less than that of the minimum mean square error (MMSE) detection. This is because the MPD algorithm does not need a matrix inversion. It also achieves a significantly better performance compared to MMSE and other message passing detection algorithms using MMSE estimate of. Further, we design optimized irregular low density parity check (LDPC) codes specific to the considered large MIMO channel and the CHEMP receiver through EXIT chart matching. The LDPC codes thus obtained achieve improved coded bit error rate performance compared to off-the-shelf irregular LDPC codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and Wastlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the (2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose an eigen framework for transmit beamforming for single-hop and dual-hop network models with single antenna receivers. In cases where number of receivers is not more than three, the proposed Eigen approach is vastly superior in terms of ease of implementation and computational complexity compared with the existing convex-relaxation-based approaches. The essential premise is that the precoding problems can be posed as equivalent optimization problems of searching for an optimal vector in the joint numerical range of Hermitian matrices. We show that the latter problem has two convex approximations: the first one is a semi-definite program that yields a lower bound on the solution, and the second one is a linear matrix inequality that yields an upper bound on the solution. We study the performance of the proposed and existing techniques using numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A design methodology based on the Minimum Bit Error Ratio (MBER) framework is proposed for a non-regenerative Multiple-Input Multiple-Output (MIMO) relay-aided system to determine various linear parameters. We consider both the Relay-Destination (RD) as well as the Source-Relay-Destination (SRD) link design based on this MBER framework, including the pre-coder, the Amplify-and-Forward (AF) matrix and the equalizer matrix of our system. It has been shown in the previous literature that MBER based communication systems are capable of reducing the Bit-Error-Ratio (BER) compared to their Linear Minimum Mean Square Error (LMMSE) based counterparts. We design a novel relay-aided system using various signal constellations, ranging from QPSK to the general M-QAM and M-PSK constellations. Finally, we propose its sub-optimal versions for reducing the computational complexity imposed. Our simulation results demonstrate that the proposed scheme indeed achieves a significant BER reduction over the existing LMMSE scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. A particularly interesting feature of this development is the ability to construct (scalar and vector) linearly solvable networks using certain classes of matroids. Furthermore, it was shown through the connection between network coding and matroid theory that linear network coding is not always sufficient for general network coding scenarios. The current work attempts to establish a connection between matroid theory and network-error correcting and detecting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of linear network-error detecting codes to arrive at the definition of a matroidal error detecting network (and similarly, a matroidal error correcting network abstracting from network-error correcting codes). An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error detecting (correcting) network code if and only if it is a matroidal error detecting (correcting) network associated with a representable matroid. Therefore, constructing such network-error correcting and detecting codes implies the construction of certain representable matroids that satisfy some special conditions, and vice versa. We then present algorithms that enable the construction of matroidal error detecting and correcting networks with a specified capability of network-error correction. Using these construction algorithms, a large class of hitherto unknown scalar linearly solvable networks with multisource, multicast, and multiple-unicast network-error correcting codes is made available for theoretical use and practical implementation, with parameters, such as number of information symbols, number of sinks, number of coding nodes, error correcting capability, and so on, being arbitrary but for computing power (for the execution of the algorithms). The complexity of the construction of these networks is shown to be comparable with the complexity of existing algorithms that design multicast scalar linear network-error correcting codes. Finally, we also show that linear network coding is not sufficient for the general network-error correction (detection) problem with arbitrary demands. In particular, for the same number of network errors, we show a network for which there is a nonlinear network-error detecting code satisfying the demands at the sinks, whereas there are no linear network-error detecting codes that do the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the spatial modulation approach, where only one transmit antenna is active at a time, we propose two transmission schemes for two-way relay channel using physical layer network coding with space time coding using coordinate interleaved orthogonal designs (CIODs). It is shown that using two uncorrelated transmit antennas at the nodes, but using only one RF transmit chain and space-time coding across these antennas can give a better performance without using any extra resources and without increasing the hardware implementation cost and complexity. In the first transmission scheme, two antennas are used only at the relay, adaptive network coding (ANC) is employed at the relay and the relay transmits a CIOD space time block code (STBC). This gives a better performance compared to an existing ANC scheme for two-way relay channel which uses one antenna each at all the three nodes. It is shown that for this scheme at high SNR the average end-to-end symbol error probability (SEP) is upper bounded by twice the SEP of a point-to-point fading channel. In the second transmission scheme, two transmit antennas are used at all the three nodes, CIOD STBCs are transmitted in multiple access and broadcast phases. This scheme provides a diversity order of two for the average end-to-end SEP with an increased decoding complexity of O(M-3) for an arbitrary signal set and O(M-2 root M) for square QAM signal set. Simulation results show that the proposed schemes performs better than the existing ANC schemes under perfect and imperfect channel state information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

QR decomposition (QRD) is a widely used Numerical Linear Algebra (NLA) kernel with applications ranging from SONAR beamforming to wireless MIMO receivers. In this paper, we propose a novel Givens Rotation (GR) based QRD (GR QRD) where we reduce the computational complexity of GR and exploit higher degree of parallelism. This low complexity Column-wise GR (CGR) can annihilate multiple elements of a column of a matrix simultaneously. The algorithm is first realized on a Two-Dimensional (2 D) systolic array and then implemented on REDEFINE which is a Coarse Grained run-time Reconfigurable Architecture (CGRA). We benchmark the proposed implementation against state-of-the-art implementations to report better throughput, convergence and scalability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe our novel LED communication infrastructure and demonstrate its scalability across platforms. Our system achieves 50 kilo bits per second on very simple SoCs and scales to megabits bits per second rates on dual processor based mobile phone platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of exact-repair regenerating codes is constructed by stitching together shorter erasure correction codes, where the stitching pattern can be viewed as block designs. The proposed codes have the help-by-transfer property where the helper nodes simply transfer part of the stored data directly, without performing any computation. This embedded error correction structure makes the decoding process straightforward, and in some cases the complexity is very low. We show that this construction is able to achieve performance better than space-sharing between the minimum storage regenerating codes and the minimum repair-bandwidth regenerating codes, and it is the first class of codes to achieve this performance. In fact, it is shown that the proposed construction can achieve a nontrivial point on the optimal functional-repair tradeoff, and it is asymptotically optimal at high rate, i.e., it asymptotically approaches the minimum storage and the minimum repair-bandwidth simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opportunistic selection in multi-node wireless systems improves system performance by selecting the ``best'' node and by using it for data transmission. In these systems, each node has a real-valued local metric, which is a measure of its ability to improve system performance. Our goal is to identify the best node, which has the largest metric. We propose, analyze, and optimize a new distributed, yet simple, node selection scheme that combines the timer scheme with power control. In it, each node sets a timer and transmit power level as a function of its metric. The power control is designed such that the best node is captured even if. other nodes simultaneously transmit with it. We develop several structural properties about the optimal metric-to-timer-and-power mapping, which maximizes the probability of selecting the best node. These significantly reduce the computational complexity of finding the optimal mapping and yield valuable insights about it. We show that the proposed scheme is scalable and significantly outperforms the conventional timer scheme. We investigate the effect of. and the number of receive power levels. Furthermore, we find that the practical peak power constraint has a negligible impact on the performance of the scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of finding small s-t separators that induce graphs having certain properties. It is known that finding a minimum clique s-t separator is polynomial-time solvable (Tarjan in Discrete Math. 55:221-232, 1985), while for example the problems of finding a minimum s-t separator that induces a connected graph or forms an independent set are fixed-parameter tractable when parameterized by the size of the separator (Marx et al. in ACM Trans. Algorithms 9(4): 30, 2013). Motivated by these results, we study properties that generalize cliques, independent sets, and connected graphs, and determine the complexity of finding separators satisfying these properties. We investigate these problems also on bounded-degree graphs. Our results are as follows: Finding a minimum c-connected s-t separator is FPT for c=2 and W1]-hard for any ca parts per thousand yen3. Finding a minimum s-t separator with diameter at most d is W1]-hard for any da parts per thousand yen2. Finding a minimum r-regular s-t separator is W1]-hard for any ra parts per thousand yen1. For any decidable graph property, finding a minimum s-t separator with this property is FPT parameterized jointly by the size of the separator and the maximum degree. Finding a connected s-t separator of minimum size does not have a polynomial kernel, even when restricted to graphs of maximum degree at most 3, unless .