541 resultados para COBALT COMPLEXES
Resumo:
4,4prime-Bipyridyl (4,4prime-bipy) complexes of ferrous salts of the Fe(4,4prime-bipy)x(anion)y type (where x or y=1 or 2) and of ferric salts of the Fe(4,4prime-bipy)m(anion)n type (where m=1 or 2 and n=3) have been synthesised. Elemental analyses, i.r. and electronic spectra, magnetic and Mössbauer studies have been performed to characterize the complexes. 4,4prime-Bipy and some anions are inferred to act as bridging ligands. The magnetic moments, electronic and Mössbauer spectra suggest that the complexes are of high spin type with distorted octahedral structures. The value of the isomer shift and quadrupole splitting are discussed in terms of bonding of the ligand and anions.
Resumo:
The charge-transfer complexes of p-dichlorobenzene (PDB) with some aromatic π acceptors such as m-nitrobenzaldehyde (MNB), picric acid (PA), p-nitrobenzoic acid (PNB), and m-dinitrobenzene (MDNB) were prepared by slowly adding the acceptor to the molten donor and then cooling the mass to 15°C. The NQR frequencies of these complexes were measured at room temperature. Contrary to the theoretical prediction, the NQR shift is positive, indicating that the NQR shift in donor-acceptor complexes is indirectly related to the charge-transfer interaction. Bond properties are discussed in terms of frequency shift.
Resumo:
Oxovanadium(IV) complexes [VO(sal-argH)(B)] Cl (1-3) and [VO(sal-lysH)(B)] Cl (4-6), where sal-argH2 and sal-lysH(2) are N-salicylidene-L-arginine and N-salicylidene-L-lysine Schiff bases and B is a phenanthroline base, viz. 1,10-phenanthroline (phen in 1 and 4); dipyrido[3,2-d: 2', 3'-f] quinoxaline (dpq in 2 and 5) and dipyrido[3,2-a: 2', 3'-c] phenazine (dppz in 3 and 6), have been prepared, characterized and their DNA photocleavage activity studied. Complex 1, characterized by X-ray crystallography, shows the presence of a vanadyl group in VIVO3N3 coordination geometry with a tridentate Schiff base having a pendant guanidinium moiety and bidentate phen ligand. The complexes exhibit a d-d band at similar to 715 nm in 20% DMF-Tris-HCl buffer. The complexes are redox active showing cathodic and anodic responses near -1.0 V and 0.85 V (vs. SCE) for the V(IV)-V(III) and V(V)-V(IV) couples, respectively, in DMF-Tris-HCl buffer. The complexes bind to calf thymus DNA giving Kb values in the range of 3.8 x 10(4) to 1.6 x 10(5) M-1. Thermal denaturation and viscosity data suggest DNA groove binding nature of the complexes. The complexes do not show any `chemical nuclease'' activity in dark in the presence of 3-mercaptopropionic acid or H2O2. The dpq and dppz complexes are efficient photocleavers of plasmid DNA in UV-A (365 nm) and red light (676 nm) via singlet oxygen pathway. The dppz complexes exhibit photocytotoxicity in HeLa cancer cells giving IC50 values of 15.4 mu M for 3 and 17.5 mu M for 6 in visible light while being non-toxic in dark giving IC50 values of > 100 mu M.
Resumo:
The CCEM method (Contact Criteria and Energy Minimisation) has been developed and applied to study protein-carbohydrate interactions. The method uses available X-ray data even on the native protein at low resolution (above 2.4 Å) to generate realistic models of a variety of proteins with various ligands.The two examples discussed in this paper are arabinose-binding protein (ABP) and pea lectin. The X-ray crystal structure data reported on ABP-β-l-arabinose complex at 2.8, 2.4 and 1.7 Å resolution differ drastically in predicting the nature of the interactions between the protein and ligand. It is shown that, using the data at 2.4 Å resolution, the CCEM method generates complexes which are as good as the higher (1.7 Å) resolution data. The CCEM method predicts some of the important hydrogen bonds between the ligand and the protein which are missing in the interpretation of the X-ray data at 2.4 Å resolution. The theoretically predicted hydrogen bonds are in good agreement with those reported at 1.7 Å resolution. Pea lectin has been solved only in the native form at 3 Å resolution. Application of the CCEM method also enables us to generate complexes of pea lectin with methyl-α-d-glucopyranoside and methyl-2,3-dimethyl-α-d-glucopyranoside which explain well the available experimental data in solution.
Resumo:
He i spectra of strong n–v type adducts of BF3 with H2O, CH3OH, (C2H5)2O, and CH3CN as well as of weak complexes of BF3 with NO and H2S are reported along with assignments based on MO calculations. The energy of the fluorine orbitals of BF3 is shown to be shifted in proportion to the strength of the donor–acceptor interaction. BF3 seems to form a contact pair with CS2.
Resumo:
Ferrocene-appended copper(II) complexes [Cu( Fc-tpy)(B)](ClO4)(2) (1-3) and [Cu(Ph-tpy)(dppz)](ClO4)(2) (4) as control, where Fc-tpy is 4'-ferroceny1-2,2':6',2 ''-terpyridine, Ph-tpy is 4'-pheny1-2,2':6',2 ''-terpyridine, and B is a phenanthroline base, viz., 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), were prepared and structurally characterized, and their DNA binding, photoactivated DNA cleavage activity, and cytotoxic properties were studied [Fe = (eta(5)-C5H4)Fe-11(eta(5)-C5H5)]. Complexes 1 and 3 as hexafluorophosphate salts were structurally characterized by X-ray crystallography. Molecular structures of [Cu(Fc-tpy)(phen)](PF6)(2) (1a) and [Cu(Fc-tpy)(dppz)](PF6)(2)center dot MeCN (3a center dot MeCN) show a distorted square-pyramidal geometry at copper(II), with the Fc-tpy ligand and the phenanthroline base showing respective tridentate and bidentate binding modes. The phenanthroline base exhibits axial-equatorial bonding, while the Fc-tpy ligand binds at the basal plane. The complexes showed quasi-reversible cyclic voltammetric responses near 0.45 and -0.3 V vs SCE in aqueous DMF-0.1 M KCl assignable to the Fc(+)-Fc and Cu(II) Cu(1) redox couples, respectively. The complexes bind to DNA, giving K-b values of 1.4 x 10(4) to 5.6 x 10(5) M-1 in the order 4 similar to 3 > 2 > 1. Thermal denaturation and viscometric titration data suggest groove and/or partial intercalative mode of DNA binding of the complexes. The complexes showed chemical nuclease activity in the presence of 3-mercaptopropionic acid (0.5 mM) or H2O2 (0.25 mM). Complexes 2-4 showed plasmid DNA cleavage activity in visible light, forming (OH)-O-center dot radicals. The Fc-tpy complex 3 showed better DNA photocleavage activity than its Ph-tpy analogue. The ferrocene moiety in the dppz complex 3 makes it more photocytotoxic than the Ph-tpy analogue 4 in HeLa cells.
Resumo:
The chemical-shift of the X-ray K-absorption edge of Co was studied in a large number of compounds, complexes (spinels) and minerals of Co in its different oxidation states having widely different crystal structures and containing different types of bonding and various types of ligands, and were reported collectively, for the first time, in a single paper. A quadratic relationship was established on the basis of least-squares regression analysis to hold between the chemical-shift and the effective charge on the absorbing atom, but the dominance of the linear term was shown. This relation was utilized in evaluating the charge on the Co-ion in a number of minerals. The effect on chemical-shift of oxidation states of the absorbing atom, of the bond length, crystal structure and higher shell atoms of the molecule, and of electronegativity, atomic number and ionic radius of the ligand was discussed.