428 resultados para Alummium-silicon Alloy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon oxide films were deposited by reactive evaporation of SiO. Parameters such as oxygen partial pressure and substrate temperature were varied to get variable and graded index films. Films with a refractive index in the range 1.718 to 1.465 at 550 nm have been successfully deposited. Films deposited using ionized oxygen has the refractive index 1.465 at 550 nm and good UV transmittance like bulk fused quartz. Preparation of graded index films was also investigated by changing the oxygen partial pressure during deposition. A two layer antireflection coating at 1064nm has been designed using both homogeneous and inhomogeneous films and studied their characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of widely used Ni-Ti-based shape memory alloys (SMAs) are highly sensitive to the underlying microstructure. Hence, controlling the evolution of microstructure during high-temperature deformation becomes important. In this article, the ``processing maps'' approach is utilized to identify the combination of temperature and strain rate for thermomechanical processing of a Ni(42)Ti(50)Cu(8) SMA. Uniaxial compression experiments were conducted in the temperature range of 800-1050 degrees C and at strain rate range of 10(-3) and 10(2) s(-1). Two-dimensional power dissipation efficiency and instability maps have been generated and various deformation mechanisms, which operate in different temperature and strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results show that the safe window for industrial processing of this alloy is in the range of 800-850 degrees C and at 0.1 s(-1), which leads to grain refinement and strain-free grains. Regions of the instability were identified, which result in strained microstructure, which in turn can affect the performance of the SMA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of electromagnetic stirring of melt on the final macrosegregation in the continuous casting of an aluminium alloy billet is studied numerically. A continuum mixture model for solidification in presence of electromagnetic stirring is presented. As a case study, simulations are performed for direct chill (DC) casting of an Al-Cu alloy and the effect of electromagnetic stirring on macrosegregation is analysed. The model predicts the temperature, velocity, and species distribution in the mold. As a special case, we have also studied the case in which dendritic particles are fragmented at the interface due to vigorous electromagnetic stirring. For this case, an additional conservation equation for the transport of solid fraction is solved. For modeling the resistance offered by moving solid crystals, a switching function in the momentum equations is used for variation of viscosity. The fragmentation and transport of dendritic particles has a profound effect on the final macrosegregation and microstructure of the solidified billet. It is found that the application of electromagnetic stirring in continuous casting of billets results in better temperature uniformity and macrosegregation pattern.