450 resultados para tin dioxide films
Resumo:
We report second harmonic generation in a new class of organic materials, namely donor-acceptor substituted all-trans butadienes doped in poly(methyl methacrylate) or polystyrene and oriented by corona poling at elevated temperatures. Second harmonic measurements were made at room temperature. The observed d33 coefficients are greater than those of potassium dihydrogen phosphate or 4-dimethylamino-4'-nitrostilbene doped in similar polymer matrices. Rotational diffusion coefficients estimated from the decay characteristics of the second harmonic intensity in the polymer films indicate that the polymer matrix plays a major role in stabilizing the dopants in a nonlinear optics conducive environment.
Resumo:
Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The brush plating technique has been employed for the first time to obtain CdSe films on Ti and conducting glass substrates. These films have been annealed in an argon atmosphere and their structural, optical and photoelectrochemical properties are discussed. The power conversion efficiency has been found to be 7.43% under an illumination of 80 mW cm-2. A peak quantum efficiency of 0.64 is obtained for an incident wavelength of 720 nm. Donor concentration of 3.42 x 10(17) cm-3, electron mobility of 3 cm2 V-1 s-1 and minority carrier diffusion length of 0.013 mum have been obtained.
Resumo:
Cu2ZnSnS4 (CZTS) is a kesterite semiconductor consisting of abundantly available elements. It has a band gap of 1.5 eV and a large absorption coefficient. Hence, thin films made of this material can be used as absorber layers of a solar cell. CZTS films were deposited on soda lime and Na free borosilicate glass substrates through Ultrasonic Spray Pyrolysis. The diffusion of sodium from soda lime glass was found to have a profound effect on characteristics like grain size, crystal texture and conductivity of CZTS thin films. Copper ion concentration also varied during the deposition and it was observed that the carrier concentration was enhanced when there was a deficiency of copper in the films. The effect of sodium diffusion and copper deficiency in enhancing the structural and electrical properties of CZTS films are presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The insertion reactions of zirconium(IV) n-butoxide and titanium(IV) n-butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion. The intermediate metallacycle extrudes a new heterocumulene, different from the two that have inserted leading to metathesis. As the reaction is reversible, catalytic metathesis is feasible. In stoichiometric reactions heterocumulene insertion, metathesis and metathesis cum insertion products are observed. However, catalytic amounts of the metal alkoxide primarily led to metathesis products. It is shown that zirconium alkoxides promote catalytic metathesis (isocyanates, carbon dioxide) more efficiently than the corresponding titanium alkoxide. The difference in the metathetic activity of these alkoxides has been explained by a computational study using model complexes Ti(OMe)(4) (1bTi) and Zr(OMe)(4) (1bZr). The computation was carried out at the B3LYP/LANL2DZ level of theory.
Resumo:
Photocatalysis using semiconductor catalyst such as TiO2, in presence of UV light, is a promising technique for the inactivation of various microorganisms present in water. In the current study, the photocatalytic inactivation of Escherichia coli bacteria was studied with commercial Degussa Aeroxide TiO2 P25 (Aeroxide) and combustion synthesized TiO2 (CS TiO2) catalysts immobilized on glass slides in presence of UV irradiation. Thin films of the catalyst and polyelectrolytes, poly(allyl amine hydrochloride) and poly(styrene sulfonate sodium salt), were deposited on glass slides by layer by layer (LbL) deposition method and characterized by SEM and AFM imaging. The effect of various parameters, namely, catalyst concentration, surface area and number of bilayers, on inactivation was studied. Maximum inactivation of 8-log reduction in the viable count was observed with 1.227 mg/cm(2) of catalyst loaded slides. With this loading, complete inactivation was observed within 90 min and 75 min of irradiation, for Aeroxide and CS TiO2, respectively. Further increase in the catalyst concentration or increasing number of bilayers had no significant effect on inactivation. The effect of surface area on the inactivation was studied by increasing the number of slides and the inactivation was observed to increase with increasing surface area. It was also observed that the immobilized catalyst slides can be used for several cycles leading to an economic process. The study shows potential application of TiO2, for the inactivation of bacteria, in its fixed form by a simple immobilization technique.
Resumo:
Highly textured, as-deposited La0.6Pb0.4MnO3 thin films have been grown on LaAlO3 by pulsed laser deposition. The films are ferromagnetic metals below 300 K. Giant negative magnetoresistance of over 40% is observed at 300 K at 6 T.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.
Resumo:
Growth and characterization of high-temperature-superconducting YBa2Cu3O7 and several metallic-oxide thin films by pulsed laser deposition is described here. An overview of substrates employed for epitaxial growth of perovskite-related oxides is presented. Ag-doped YBa2Cu3O7 films grown on bare sapphire are shown to give T-c = 90 K, critical current > 10(6) A/cm(2) at 77 K and surface resistance = 450 mu Omega. Application of epitaxial metallic LaNiO3 thin films as an electrode for ferroelectric oxide and as a normal metal layer barrier in the superconductor-normal metal-superconductor (SNS) Josephson junction is presented. Observation of giant magnetoresistance (GMR) in the metallic La0-6Pb0-4MnO3 thin films up to 50% is highlighted.
Resumo:
Microstructural and superconducting properties of YBa2Cu3O7-x thin films grown in situ on bare sapphire by pulsed laser deposition using YBa2Cu3O7-x targets doped with 7 and 10 wt% Ag have been studied. Ag-doped films grown at 730 degrees C on sapphire have shown very significant improvement over the undoped YBa2Cu3O7-x films grown under identical condition. A zero resistance temperature of 90 K and a critical current density of 1.2 x 10(6) A/cm(2) at 77 K have been achieved on bare sapphire for the first time. Improved connectivity among grains and reduced reaction rate between the substrate and the film caused due to Ag in the film are suggested to be responsible for this greatly improved transport properties.
Resumo:
Silver selenide thin films of thickness between 80 nm and 160 nm were prepared by thermal evaporation technique at a high vacuum better than 2x10(-5)mbar on well cleaned glass substrates at a deposition rate of 0.2 nm/sec. Silver selenide thin films were polycrystalline with orthorhombic structure. Ellipsometric spectra of silver selenide thin films have been recorded in the wavelength range between 300 nm and 700 nm. Optical constants like refractive index, extinction coefficient, absorption coefficient, and optical band gap of silver selenide thin film have been calculated from the recorded spectra. The refractive index of silver selenide has been found to vary between 1.9 and 3.2 and the extinction coefficient varies from 0.5 to 1.6 with respect to their corresponding thickness of the films. Transmittance spectra of these films have been recorded in the wavelength range between 300 nm and 900 nm and its spectral data are analysed. The photoluminescence studies have been carried out on silver selenide thin films and the strong emission peak is found around 1.7 eV. The calculated optical band of thermally evaporated silver selenide thin films is found to be around 1.7 eV from their Ellipsometric, UV-Visible and Photoluminescence spectroscopic studies.
Resumo:
A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.
Resumo:
Polycrystalline strontium titanate (SrTiO3) films were prepared by a pulsed laser deposition technique on p-type silicon and platinum-coated silicon substrates. The films exhibited good structural and dielectric properties which were sensitive to the processing conditions. The small signal dielectric constant and dissipation factor at a frequency of 100 kHz were about 225 and 0.03 respectively. The capacitance-voltage (C-V) characteristics in metal-insulator-semiconductor structures exhibited anomalous frequency dispersion behavior and a hysteresis effect. The hysteresis in the C-V curve was found to be about 1 V and of a charge injection type. The density of interface states was about 1.79 x 10(12) cm(-2). The charge storage density was found to be 40 fC mu m(-2) at an applied electric field of 200 kV cm(-1). Studies on current-voltage characteristics indicated an ohmic nature at lower voltages and space charge conduction at higher voltages. The films also exhibited excellent time-dependent dielectric breakdown behavior.
Resumo:
CZTS (Copper Zinc Tin Sulphide) is a wide band gap quartnery chalcopyrite which has a band gap of about 1.45 eV and an absorption coefficient of 10(4) cm(-1); thus making it an ideal material to be used as an absorber layer in solar cells. Ultrasonic Spray Pyrolysis is a deposition technique, where the solution is atomized ultrasonically, thereby giving a fine mist having a narrow size distribution which can be used for uniform coatings on substrates. An Ultrasonic Spray Pyrolysis equipment was developed and CZTS absorber layers were successfully grown with this technique on soda lime glass substrates using aqueous solutions. Substrate temperatures ranging from 523 K to 723 K were used to deposit the CZTS layers and these films were characterized using SEM, EDAX and XRD. It was observed that the film crystallized in the kesterite structure and the best crystallites were obtained at 613 K. It was observed that the grain size progressively increased with temperature. The optical band gap of the material was obtained as 1.54 eV.
Resumo:
Scanning tunneling microscopy of C-70 films deposited on HOPG and gold substrates has been carried but to investigate the 2D packing, defects and disorder. Besides providing direct evidence for orientational disorder, high resolution; images showing the carbon skeleton as well as the molecular arrangement in a solid solution of C-70 and C-60 are presented. Tunneling conductance measurements Indicate a small gap in the C-70 film deposited on HOPG substrate.