334 resultados para state equations
Resumo:
The criterion for the design of a temperature-compensated reference electrode for non-isothermal galvanic sensors is deduced from the basic flux equations of irreversible thermodynamics. It is shown that when the Seebeck coefficient of the non-isothermal cell using a solid oxygen ion-conducting electrolyte under pure oxygen is equal to the relative partial molar entropy of oxygen in the reference electrode divided by 4F, then the EMF of the non-isothermal cell is the same as that of an isothermal cell with the same electrodes operating at the higher temperature. By measuring the temperature of the melt alone and the EMF of the non-isothermal galvanic sensor, one can derive the chemical potential or the concentration of oxygen in a corrosive medium. The theory is experimentally checked using sensors for oxygen in liquid copper constructed with various metal+oxide electrodes and fully stabilised (CaO)ZrO2 as the electrolyte. To satisfy the exact condition for temperature compensation it is often necessary to have the metal or oxide as a solid solution in the reference electrode.
Resumo:
An analysis is performed to study the unsteady laminar incompressible boundary-layer flow of an electrically conducting fluid in a cone due to a point sink with an applied magnetic field. The unsteadiness in the flow is considered for two types of motion, viz. the motion arising due to the free stream velocity varying continuously with time and the transient motion occurring due to an impulsive change either in the strength of the point sink or in the wall temperature. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The magnetic field increases the skin friction but reduces heat transfer. The heat transfer and temperature field are strongly influenced by the viscous dissipation and Prandtl number. The velocity field is more affected at the early stage of the transient motion, caused by an impulsive change in the strength of the point sink, as compared to the temperature field. When the transient motion is caused by a sudden change in the wall temperature, both skin friction and heat transfer take more time to reach a new steady state. The transient nature of the flow and heat transfer is active for a short time in the case of suction and for a long time in the case of injection. The viscous dissipation prolongs the transient behavior of the flow.
Resumo:
We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the "sampling interval" used in the measurement for both "steady-state" and "finite" initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A "deterministic approximation" is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.
Resumo:
In this paper we address the problem of transmission of correlated sources over a fast fading multiple access channel (MAC) with partial channel state information available at both the encoders and the decoder. We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). We provide the optimal power allocation strategy and compare the strategy with various levels of channel state information.
Resumo:
The shock manifold equation is a first order nonlinear partial differential equation, which describes the kinematics of a shockfront in an ideal gas with constant specific heats. However, it was found that there was more than one of these shock manifold equations, and the shock surface could be embedded in a one parameter family of surfaces, obtained as a solution of any of these shock manifold equations. Associated with each shock manifold equation is a set of characteristic curves called lsquoshock raysrsquo. This paper investigates the nature of various associated shock ray equations.
Resumo:
Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.
Resumo:
It is shown that thermally stimulated photocurrent measurements provide a simple and effective method of determining the activation energy of thermal regeneration rate of EL2 from the metastable state to the normal state in undoped semi‐insulating GaAs. The thermal regeneration rate r is found to be 2.5×108 exp(−0.26 eV/kT) s−1.
Resumo:
We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]
Resumo:
Three new phosphonoacetate hybrid frameworks based on the actinide elements uranium and thorium have been synthesized. The compounds [C4N2H14][(UO2)(2)(O3PCH2COO)(2)]center dot H2O, I,[C4N2H14][(UO2)(2)(C2O4)(O3PCH2COOH)(2)], II, and Th(H2O)(2)(O3PCH2COO)(C2O4)(0.5). H2O, III, are built up from the connectivity between the metal polyhedra and the phosphonoacetate/oxalate units. Compound II has been prepared using a solvent-free approach, by a solid state reaction at 150 degrees C. It has been shown that II can also be prepared through a room temperature mechanochemical (grinding) route. The layer arrangement in III closely resembles to that observed in I. The compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and fluorescence studies.
Resumo:
It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1
Resumo:
A modified set of governing equations for gas-particle flows in nozzles is suggested to include the inertial forces acting on the particle phase. The problem of gas-particle flow through a nozzle is solved using a first order finite difference scheme. A suitable stability condition for the numerical scheme for gas-particle flows is defined. Results obtained from the present set of equations are compared with those of the previous set of equations. It is also found that present set of equations give results which are in good agreement with the experimental observation.
Resumo:
In this paper we have discussed limits of the validity of Whitham's characteristic rule for finding successive positions of a shock in one space dimension. We start with an example for which the exact solution is known and show that the characteristic rule gives correct result only if the state behind the shock is uniform. Then we take the gas dynamic equations in two cases: one of a shock propagating through a stratified layer and other down a nonuniform tube and derive exact equations for the evolution of the shock amplitude along a shock path. These exact results are then compared with the results obtained by the characteristic rule. The characteristic rule not only incorrectly accounts for the deviation of the state behind the shock from a uniform state but also gives a coefficient in the equation which differ significantly from the exact coefficients for a wide range of values of the shock strength.
Resumo:
In the combinatorial method or Grassmann algebra formalism the ground state properties of the f J Ising model can be expressed in terms of the behaviour of the eigenvectors of a matrix. It is shown that a transition from localized to extended eigenvectors signals the breakdown of ferromagnetic rigidity.