233 resultados para oxygen vacancies
Resumo:
A protocol to efficiently assess Reactive Oxygen Species (ROS) levels in yeast cells using H2DCF-DA is described here. This method employs lithium acetate to permeate the cell wall, and thus, augments the release of the fluorescent product, dichlorofluorescein from the cells. This protocol obviates the need for both physical and enzymatic lysis methods that are arduous and time consuming. This method is simple, less time consuming and reproducible, especially while dealing with a large sample size. The lithium acetate method gave significantly reproducible and linear results (P < 0.0001), as compared with direct measurement (P = 0.0005), sonication (P = 0.1466) and bead beating (P = 0.0028).
Surface modification of titania aerogel films by oxygen plasma treatment for enhanced dye adsorption
Resumo:
Titania aerogels were synthesized by sol-gel route followed by ambient pressure subcritical drying technique. The aerogels synthesized in the present work possess a maximum surface area of 252 m(2)/g. The pore size distribution is between 2 and 30 nm which confirms their mesoporosity. The oxygen plasma treatment on titania aerogel thin films improved the surface area up to 273 m(2)/g and produced additional hydrophilic groups on the surface. It is confirmed by BET surface area, XPS and thermal analysis in conjunction with dye adsorption studies. After plasma treatment the dye adsorption capacity was increased 2.5 times higher than that of untreated aerogel film. The increased surface area and the hydrophilic groups generated on the titania aerogel surface during plasma treatment are responsible for enhanced dye adsorption. The overall nanoporous morphology of titania aerogel is preserved after plasma treatment. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min(-1). The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.
Resumo:
Mycobacterium tuberculosis (Mtb) adaptation to hypoxia is considered crucial to its prolonged latent persistence in humans. Mtb lesions are known to contain physiologically heterogeneous microenvironments that bring about differential responses from bacteria. Here we exploit metabolic variability within biofilm cells to identify alternate respiratory polyketide quinones (PkQs) from both Mycobacterium smegmatis (Msmeg) and Mtb. PkQs are specifically expressed in biofilms and other oxygen-deficient niches to maintain cellular bioenergetics. Under such conditions, these metabolites function as mobile electron carriers in the respiratory electron transport chain. In the absence of PkQs, mycobacteria escape from the hypoxic core of biofilms and prefer oxygenrich conditions. Unlike the ubiquitous isoprenoid pathway for the biosynthesis of respiratory quinones, PkQs are produced by type III polyketide synthases using fatty acyl-CoA precursors. The biosynthetic pathway is conserved in several other bacterial genomes, and our study reveals a redox-balancing chemicocellular process in microbial physiology.
Resumo:
Ferroelectricity in ZnO is an unlikely physical phenomenon. Here, we show ferroelectricity in undoped 001] ZnO nanorods due to zinc vacancies. Generation of ferroelectricity in a ZnO nanorod effectively increases its piezoelectricity and turns the ZnO nanorod into an ultrahigh-piezoelectric material. Here using piezoelectric force microscopy (PFM), it is observed that increasing the frequency of the AC excitation electric field decreases the effective d(33). Subsequently, the existence of a reversible permanent electric dipole is also found from the P-E hysteresis loop of the ZnO nanorods. Under a high resolution transmission electron microscope (HRTEM), we observe a zinc blende stacking in the wurtzite stacking of a single nanorod along the growth axis. The zinc blende nature of this defect is also supported by the X-ray diffraction (XRD) and Raman spectra. The presence of zinc vacancies in this basal stacking fault modulates p-d hybridization of the ZnO nanorod and produces a magnetic moment through the adjacent oxygen ions. This in turn induces a reversible electric dipole in the non-centrosymmetric nanostructure and is responsible for the ultrahigh-piezoelectric response in these undoped ZnO nanorods. We reveal that this defect engineered ZnO can be considered to be in the competitive class of ultrahigh-piezoelectric nanomaterials for energy harvesting and electromechanical device fabrication.
Resumo:
In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.
Resumo:
Primary and secondary zinc-air batteries based on ceramic, stable, one dimensional titanium carbonitride (TiCN) nanostructures are reported. The optimized titanium carbonitride composition by density functional theory reveals their good activity towards the oxygen reduction reaction (ORR). Electrochemical measurements show their superior performance for the ORR in alkaline media coupled with favourable kinetics. The nanostructured TiCN lends itself amenable to be used as an air cathode material in primary and rechargeable zinc-air batteries. The battery performance and cyclability are found to be good. Further, we have demonstrated a gel-based electrolyte for rechargeable zinc-air batteries based on a TiCN cathode under ambient, atmospheric conditions without any oxygen supply from a cylinder. The present cell can work at current densities of 10-20 mA cm(2) (app. 10 000 mA g(-1) of TiCN) for several hours (63 h in the case of 10 mA cm(-2)) with a charge retention of 98%. The low cost, noble metal-free, mechanically stable and corrosion resistant TiCN is a very good alternative to Pt for metal-air battery chemistry.
Resumo:
A composite of manganese oxide and reduced graphene oxide (rGO) is prepared in a single step electrochemical reduction process in a phosphate buffer solution for studying as an electrocatalyst for the oxygen evolution reaction (OER). The novel composite catalyst, namely, MnOx-Pi-rGO, is electrodeposited from a suspension of graphene oxide (GO) in a neutral phosphate buffer solution containing KMnO4. The manganese oxide incorporates phosphate ions and deposits on the rGO sheet, which in turn is formed on the substrate electrode by electrochemical reduction of GO in the suspension. The OER is studied with the MnOx-Pi-rGO catalyst in a neutral phosphate electrolyte by linear sweep voltammetry. The results indicate a positive influence of rGO in the catalyst. By varying the ratio of KMnO4 and GO in the deposition medium and performing linear sweep voltammetry for the OER, the optimum composition of the deposition medium is obtained as 20 mM KMnO4 + 6.5% GO in 0.1 M phosphate buffer solution of pH 7. Under identical conditions, the MnOx-Pi-rGO catalyst exhibits 6.2 mA cm(-2) OER current against 2.9 mA cm(-2) by MnOx-Pi catalyst at 2.05 V in neutral phosphate solution. The Tafel slopes measured for OER at MnOx-Pi and MnOx-Pi-rGO are similar in magnitude at about 0.180 V decade(-1). The high Tafel slopes are attributed to partial dissolution of the catalyst during oxygen evolution. The O-2 evolved at the catalyst is measured by the water displacement method and the positive role of rGO on catalytic activity of MnOx-Pi is demonstrated.