332 resultados para multi-turn injection
Resumo:
This paper describes a semi-automatic tool for annotation of multi-script text from natural scene images. To our knowledge, this is the maiden tool that deals with multi-script text or arbitrary orientation. The procedure involves manual seed selection followed by a region growing process to segment each word present in the image. The threshold for region growing can be varied by the user so as to ensure pixel-accurate character segmentation. The text present in the image is tagged word-by-word. A virtual keyboard interface has also been designed for entering the ground truth in ten Indic scripts, besides English. The keyboard interface can easily be generated for any script, thereby expanding the scope of the toolkit. Optionally, each segmented word can further be labeled into its constituent characters/symbols. Polygonal masks are used to split or merge the segmented words into valid characters/symbols. The ground truth is represented by a pixel-level segmented image and a '.txt' file that contains information about the number of words in the image, word bounding boxes, script and ground truth Unicode. The toolkit, developed using MATLAB, can be used to generate ground truth and annotation for any generic document image. Thus, it is useful for researchers in the document image processing community for evaluating the performance of document analysis and recognition techniques. The multi-script annotation toolokit (MAST) is available for free download.
Resumo:
This paper describes a new method of color text localization from generic scene images containing text of different scripts and with arbitrary orientations. A representative set of colors is first identified using the edge information to initiate an unsupervised clustering algorithm. Text components are identified from each color layer using a combination of a support vector machine and a neural network classifier trained on a set of low-level features derived from the geometric, boundary, stroke and gradient information. Experiments on camera-captured images that contain variable fonts, size, color, irregular layout, non-uniform illumination and multiple scripts illustrate the robustness of the method. The proposed method yields precision and recall of 0.8 and 0.86 respectively on a database of 100 images. The method is also compared with others in the literature using the ICDAR 2003 robust reading competition dataset.
Resumo:
A new multi-sensor image registration technique is proposed based on detecting the feature corner points using modified Harris Corner Detector (HDC). These feature points are matched using multi-objective optimization (distance condition and angle criterion) based on Discrete Particle Swarm Optimization (DPSO). This optimization process is more efficient as it considers both the distance and angle criteria to incorporate multi-objective switching in the fitness function. This optimization process helps in picking up three corresponding corner points detected in the sensed and base image and thereby using the affine transformation, the sensed image is aligned with the base image. Further, the results show that the new approach can provide a new dimension in solving multi-sensor image registration problems. From the obtained results, the performance of image registration is evaluated and is concluded that the proposed approach is efficient.
Resumo:
Supramolecular chemistry is an emerging tool for devising materials that can perform specified functions. The self-assembly of facially amphiphilic bile acid molecules has been extensively utilized for the development of functional soft materials. Supramolecular hydrogels derived from the bile acid backbone act as useful templates for the intercalation of multiple components. Based on this, synthesis of gel-nanoparticle hybrid materials, photoluminescent coating materials, development of a new enzyme assay technique, etc. were achieved in the author's laboratory. The present account highlights some of these achievements.
Resumo:
The role of a computer emerged from modeling and analyzing concepts (ideas) to generate concepts. Research into methods for supporting conceptual design using automated synthesis had attracted much attention in the past decades. To find out how designers synthesize solution concepts for multi-state mechanical devices, ten experimental studies were conducted. Observations from these empirical studies would be used as the basis to develop knowledge involved in the multi-state design synthesis process. In this paper, we propose a computational representation for expressing the multi-state design task and for enumerating multi-state behaviors of kinematic pairs and mechanisms. This computational representation would be used to formulate computational methods for the synthesis process to develop a system for supporting design synthesis of multiple state mechanical devices by generating a comprehensive variety of solution alternatives.
Resumo:
Bulk texture measurement of multi-axial forged body center cubic interstitial free steel performed in this study using x-ray and neutron diffraction indicated the presence of a strong {101}aOE (c) 111 > single texture component. Viscoplastic self-consistent simulations could successfully predict the formation of this texture component by incorporating the complicated strain path followed during this process and assuming the activity of {101}aOE (c) 111 > slip system. In addition, a first-order estimate of mechanical properties in terms of highly anisotropic yield locus and Lankford parameter was also obtained from the simulations.
Resumo:
This work proposes a boosting-based transfer learning approach for head-pose classification from multiple, low-resolution views. Head-pose classification performance is adversely affected when the source (training) and target (test) data arise from different distributions (due to change in face appearance, lighting, etc). Under such conditions, we employ Xferboost, a Logitboost-based transfer learning framework that integrates knowledge from a few labeled target samples with the source model to effectively minimize misclassifications on the target data. Experiments confirm that the Xferboost framework can improve classification performance by up to 6%, when knowledge is transferred between the CLEAR and FBK four-view headpose datasets.
Resumo:
Multi-view head-pose estimation in low-resolution, dynamic scenes is difficult due to blurred facial appearance and perspective changes as targets move around freely in the environment. Under these conditions, acquiring sufficient training examples to learn the dynamic relationship between position, face appearance and head-pose can be very expensive. Instead, a transfer learning approach is proposed in this work. Upon learning a weighted-distance function from many examples where the target position is fixed, we adapt these weights to the scenario where target positions are varying. The adaptation framework incorporates reliability of the different face regions for pose estimation under positional variation, by transforming the target appearance to a canonical appearance corresponding to a reference scene location. Experimental results confirm effectiveness of the proposed approach, which outperforms state-of-the-art by 9.5% under relevant conditions. To aid further research on this topic, we also make DPOSE- a dynamic, multi-view head-pose dataset with ground-truth publicly available with this paper.
Resumo:
The incorporation of beta-amino acid residues into the antiparallel beta-strand segments of a multi-stranded beta-sheet peptide is demonstrated for a 19-residue peptide, Boc-LV(beta)FV(D)PGL(beta)FVVL(D)PGLVL(beta)FVV-OMe (BBH19). Two centrally positioned (D)Pro-Gly segments facilitate formation of a stable three-stranded beta-sheet, in which beta-phenylalanine ((beta)Phe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR-derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well-defined three-stranded beta-sheet structure in solution. Cross-strand interactions between (beta)Phe3/(beta)Phe17 and (beta)Phe3/Val15 residues define orientations of these side-chains. The observation of close contact distances between the side-chains on the N- and C-terminal strands of the three-stranded beta-sheet provides strong support for the designed structure. Evidence is presented for multiple side-chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three-stranded beta-sheet structures, which in turn influences the conformational interconversion between type I' and type II' beta-turns at the two (D)Pro-Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc-LV(beta)FV(D)PGL(beta)FVV-OMe (BBH10), which has been previously characterized as a type I' beta-turn nucleated hairpin, is shown to favour a type II' beta-turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.
Resumo:
Closed-form expressions for the propagation characteristics of coupled microstrip lines with a symmetrical aperture in the ground plane are derived. Expressions for the regular microstrip coupled lines have been modified using physical insights to incorporate the effect of the aperture. The accuracy of these expressions has been verified by full-wave simulations and compared with conformal mapping analysis. These expressions are accurate within 5% for a substrate whose thickness varies from 0.2 to 1.6mm and permittivity in the range of 210. Designing a broadband filter based on planar multi-conductor coupled lines with aperture in the ground plane is demonstrated in this paper using the proposed expressions for its practical use.
Resumo:
Impact of global warming on daily rainfall is examined using atmospheric variables from five General Circulation Models (GCMs) and a stochastic downscaling model. Daily rainfall at eleven raingauges over Malaprabha catchment of India and National Center for Environmental Prediction (NCEP) reanalysis data at grid points over the catchment for a continuous time period 1971-2000 (current climate) are used to calibrate the downscaling model. The downscaled rainfall simulations obtained using GCM atmospheric variables corresponding to the IPCC-SRES (Intergovernmental Panel for Climate Change - Special Report on Emission Scenarios) A2 emission scenario for the same period are used to validate the results. Following this, future downscaled rainfall projections are constructed and examined for two 20 year time slices viz. 2055 (i.e. 2046-2065) and 2090 (i.e. 2081-2100). The model results show reasonable skill in simulating the rainfall over the study region for the current climate. The downscaled rainfall projections indicate no significant changes in the rainfall regime in this catchment in the future. More specifically, 2% decrease by 2055 and 5% decrease by 2090 in monsoon (HAS) rainfall compared to the current climate (1971-2000) under global warming conditions are noticed. Also, pre-monsoon (JFMAM) and post-monsoon (OND) rainfall is projected to increase respectively, by 2% in 2055 and 6% in 2090 and, 2% in 2055 and 12% in 2090, over the region. On annual basis slight decreases of 1% and 2% are noted for 2055 and 2090, respectively.
Resumo:
Genomic data of several organisms have revealed the presence of a vast repertoire of multi-domain proteins. The role played by individual domains in a multi-domain protein has a profound influence on the overall function of the protein. In the present analysis an attempt has been made to better understand the tethering preferences of domain families that occur in multi-domain proteins. The analysis has been carried out on an exhaustive dataset of 2 961 898 sequences of proteins from 930 organisms, where 741 274 proteins are comprised of at least two domain families. For every domain family, the number of other domain families with which it co-occurs within a protein in this dataset has been enumerated and is referred to as the tethering number of the domain family. It was found that, in the general dataset, the AAA ATPase family and the family of Ser/Thr kinases have the highest tethering numbers of 450 and 444 respectively. Further analysis reveals significant correlation between the number of members in a family and its tethering number. Positive correlation was also observed for the extent of a sequence and functional diversity within a family and the tethering numbers of domain families. Domain families that are present ubiquitously in diverse organisms tend to have large tethering numbers, while organism/kingdom-specific families have low tethering numbers. Thus, the analysis uncovers how domain families recombine and evolve to give rise to multi-domain proteins.
Resumo:
Ever increasing energy requirements, environmental concerns and energy security needs are strongly influencing engine researchers to consider renewable biofuels as alternatives to fossil fuels. Spray process being important in IC engine combustion, existing literature on various biofuel sprays is reviewed and summarized. Both experimental and computational research findings are reviewed in a detailed manner for compression ignition (CI) engine sprays and briefly for spark ignition (SI) engine sprays. The physics of basic atomization process of sprays from various injectors is included to highlight the most recent research findings followed by discussion highlighting the effect of physico-chemical properties on spray atomization for both biofuels and fossil fuels. Biodiesel sprays are found to penetrate faster and haw narrow spray plume angle and larger droplet sizes compared to diesel. Results of analytical and computational models are shown to be useful in shedding light on the actual process of atomization. However, further studies on understanding primary atomization and the effect of fuel properties on primary atomization are required. As far as secondary atomization is concerned, changes in regimes are observed to occur at higher air-jet velocities for biodiesel compared to those of diesel. Evaporating sprays revealed that the liquid length is longer for biodiesel. Pure plant oil sprays with potential use in CI engines may require alternative injector technology due to slower breakup as compared to diesel. Application of ethanol to gasoline engines may be feasible without any modifications to port fuel injection (PFI) engines. More studies are required on the application of alternative fuels to high pressure sprays used in Gasoline Direct Injection (GDI) engines.
Resumo:
A DC micro-grid essentially consists of power ports, bidirectional power converter and a controller structure that enables the control of dynamic power flow. In this paper, a prototype of a micro-grid structure using a recently proposed multi-winding transformer based power converter has been implemented. The power converter topology is further extended to multiple transformer cores in order to form a growing micro-grid structure. Additionally, modifications have been made in order to incorporate a battery charge controller with the main power circuit. All the other advantages of the power converter and its control scheme are still preserved.
Resumo:
This paper presents the modelling and analysis of voltage stability at AC commutation bus in LCC (Line commutated converters) based multi-infeed HVDC system. The paper also presents the analysis of effects of various operating control modes in HVDC as well as location of disturbance on the voltage stability of the system under study. A new method of modelling the LCC converters as time varying admittance at the AC commutation bus is also presented in this paper. In this paper, the modelling of STATCOM for provision of dynamic voltage support at one of the AC buses of the HVDC system is presented. The reactive power injected by STATCOM is controlled by regulating the voltage of the AC bus to which STATCOM is connected. The case study also discusses the effects of various possible combinations of location of STATCOM and disturbance considered, on the voltage stability of the multi-infeed HVDC system.