301 resultados para mechanical device


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new hybrid multilevel power converter topology is presented in this paper. The proposed power converter topology uses only one DC source and floating capacitors charged to asymmetrical voltage levels, are used for generating different voltage levels. The SVPWM based control strategy used in this converter maintains the capacitor voltages at the required levels in the entire modulation range including the over-modulation region. For the voltage levels: nine and above, the number of components required in the proposed topology is significantly lower, compared to the conventional multilevel inverter topologies. The number of capacitors required in this topology reduces drastically compared to the conventional flying capacitor topology, when the number of levels in the inverter output increases. This topology has better fault tolerance, as it is capable of operating with reduced number of levels, in the entire modulation range, in the event of any failure in the H-bridges. The transient as well as the steady state performance of the nine-level version of the proposed topology is experimentally verified in the entire modulation range including the over-modulation region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicene, a graphene analogue of silicon, has been generating immense interest due to its potential for applications in miniaturized devices. Unlike planar graphene, silicene prefers a buckled structure. Here we explore the possibility of stabilizing the planar form of silicene by Ni doping using first principles density functional theory based calculations. It is found that planar as well as buckled structure is stable for Ni-doped silicene, but the buckled sheet has slightly lower total energy. The planar silicene sheet has unstable phonon modes. A comparative study of the mechanical properties reveals that the in-plane stiffness of both the pristine and the doped planar silicene is higher compared to that of the buckled silicene. This suggests that planar silicene is mechanically more robust. Electronic structure calculations of the planar and buckled Ni-doped silicene show that the energy bands at the Dirac point transform from linear behavior to parabolic dispersion. Furthermore, we extend our study to Ge and Sn sheets that are also stable and the trends of comparable mechanical stability of the planar and buckled phases remain the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schottky barrier devices of metal/semiconductor/metal structure were fabricated using organic semiconductor polyaniline (PANI) and aluminium thin film cathode. Aluminium contacts were made by thermal evaporation technique using two different forms of metals (bulk and nanopowder). The structure and surface morphology of these films were investigated by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Grain size of the as-deposited films obtained by Scherrer's method, modified Williamson-Hall method, and SEM were found to be different. Current-voltage (I-V) characteristic of Schottky barrier device structure indicates that the calculated current density (J) for device fabricated from aluminium nanopowder is more than that from aluminium in bulk form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glasses and glass-nanocrystal (anatase TiO2) composites in BaO-TiO2-B2O3 system were fabricated by conventional melt-quenching technique and controlled heat treatment respectively. Poisson's ratio and Young's moduli were predicted through Makishima-Mackenzie theoretical equation for the as-quenched glasses by taking the four and three coordinated borons into account. Mechanical properties of the glasses and glass-nanocrystal composites were investigated in detail through nanoindentation and microindentation studies. Predicted Young's moduli of glasses were found to be in reasonable agreement with nanoindentation Measurements. Hardness and Young's modulus were enhanced with increasing volume fraction of nanocrystallites of TiO2 in glass matrix whereas fracture toughness was found susceptible to the surface features. The results were correlated to the structural units and nanocrystals present in the glasses. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conceptual model for deep geological disposal of high level nuclear waste (HLW) is based on multiple barrier system consisting of natural and engineered barriers. Buffer/backfill material is regarded as the most important engineered barrier in HLW repositories. Due to large swelling ability, cation adsorption capacity, and low permeability bentonite is considered as suitable buffer material in HLW repositories. Japan has identified Kunigel VI bentonite, South Korea - Kyungju bentonite, China - GMZ bentonite, Belgium - FoCa clay, Sweden - MX-80 bentonite, Spain - FEBEX bentonite and Canada - Avonseal bentonite as candidate bentonite buffer for deep geological repository program. An earlier study on Indian bentonites by one of the authors suggested that bentonite from Barmer district of Rajasthan (termed Barmer 1 bentonite), India is suited for use as buffer material in deep geological repositories. However, the hydro-mechanical properties of the Barmer 1 bentonite are unavailable. This paper characterizes Barmer 1 bentonite for hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength at different dry densities. The properties of Barmer 1 bentonite were compared with bentonite buffers reported in literature and equations for designing swell pressure and saturated permeability coefficient of bentonite buffers were arrived at. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A paradigm shift from hard to flexible, organic-based optoelectronics requires fast and reversible mechanical response from actuating materials that are used for conversion of heat or light into mechanical motion. As the limits in the response times of polymer-based actuating materials are reached, which are inherent to the less-than-optimal coupling between the light/heat and mechanical energy in them, 1 a conceptually new approach to mechanical actuation is required to leapfrog the performance of organic actuators. Herein, we explore single crystals of 1,2,4,5-tetrabromobenzene (TBB) as actuating elements and establish relations between their kinematic profile and mechanical properties. Centimeter-size acicular crystals of TBB are the only naturally twinned crystals out of about a dozen known materials that exhibit the thermosalient effect-an extremely rare and visually impressive crystal locomotion. When taken over a phase transition, crystals of this material store mechanical strain and are rapidly self-actuated to sudden jumps to release the internal strain, leaping up to several centimeters. To establish the structural basis for this colossal crystal motility, we investigated the mechanical profile of the crystals from macroscale, in response to externally induced deformation under microscope, to nanoscale, by using nanoindentation. Kinematic analysis based on high-speed recordings of over 200 twinned TBB crystals exposed to directional or nondirectional heating unraveled that the crystal locomotion is a kinematically complex phenomenon that includes at least six kinematic effects. The nanoscale tests confirm the highly elastic nature, with an elastic deformation recovery (60%) that is far superior to those of molecular crystals reported earlier. This property appears to be critical for accumulation of stress required for crystal jumping. Twinned crystals of TBB exposed to moderate directional heating behave as all-organic analogue of a bimetallic `strip, where the lattice misfit between the two crystal components drives reveriible deformation of the crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we show a novel chemo-mechanical-optical sensing mechanism in single and multi-layer hydrogel coated Fiber Bragg Grating (FBG) and demonstrate specific application in pH activated processes. The sensing device is based on the ionizable monomers inside the hydrogel which reversibly dissociates as a function of the pH and consequently resulting in osmotic pressure difference between the gel and the solution. This pressure gradient causes the hydrogel to deform which in turn induces secondary strain on the FBG sensor resulting in shift in the Bragg wavelength. We also report on the sensitivity factor of single and multilayer hydrogel coated FBG at various different pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5 TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a two-phase heat transport device such as the loop heat pipe is influenced by the evaporative heat transfer coefficient in the evaporator. From previous experiments with loop heat pipes, it has been observed that fluids with a high heat pipe figure of merit have a high heat transfer coefficient. Considering an evaporating extended thin film, this paper theoretically corroborates this experimental observation by deriving a direct link between the evaporative heat flux at the interface and the fluid figures of merit (namely interline heat flow parameter and heat pipe figure of merit) in the thin film. Numerical experiments with different working fluids clearly show that a fluid with high figure of merit also has a high cumulative heat transfer in the microregion encompassing the evaporating thin film. Thus, a loop heat pipe or heat pipe that uses a working fluid with a high interline heat flow parameter and heat pipe figure of merit will lead to a high evaporative heat transfer coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B4C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B4C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B4C)(BM) hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B4C)(BM) hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + xB(4)C)(BM) hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B4C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B4C addition. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the effect of nano-B4C addition on the microstructural and the mechanical behavior of pure Mg are investigated. Pure Mg-metal reinforced with different amounts of nano-size B4C particulates were synthesized using the disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of the developed Mg/x-B4C composites revealed uniform distribution of nano-B4C particulates and significant grain refinement. Electron back scattered diffraction (EBSD) analyses showed presence of relatively more recrystallized grains and absence of fiber texture in Mg/B4C nanocomposites when compared to pure Mg. The evaluation of mechanical properties indicated a significant improvement in tensile properties of the composites. The significant improvement in tensile ductility (similar to 180% increase with respect to pure Mg) is among the highest observed when compared to the pure Mg based nanocomposites existing in the current literature. The superior mechanical properties of the Mg/B4C nanocomposites are attributed to the uniform distribution of the nanoparticles and the tendency for texture randomization (absence of fiber texture) achieved due to the nano-B4C addition. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical and electrical characteristics of cellular network of the carbon nanotubes (CNT) impregnated with metallic and nonmetallic nanoparticles were examined simultaneously by employing the nanoindentation technique. Experimental results show that the nanoparticle dispersion not only enhances the mechanical strength of the cellular CNT by two orders of magnitude but also imparts variable nonlinear electrical characteristics; the latter depends on the contact resistance between nanoparticles and CNT, which is shown to depend on the applied load while indentation. Impregnation with silver nanoparticles enhances the electrical conductance, the dispersion with copper oxide and zinc oxide nanoparticles reduces the conductance of CNT network. In all cases, a power law behavior with suppression in the differential conductivity at zero bias was noted, indicating electron tunneling through the channels formed at the CNT-nanoparticle interfaces. These results open avenues for designing cellular CNT foams with desired electro-mechanical properties and coupling. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide nanorods (ZnO NRs) have been synthesized on flexible substrates by adopting a new and novel three-step process. The as-grown ZnO NRs are vertically aligned and have excellent chemical stoichiometry between its constituents. The transmission electron microscopic studies show that these NR structures are single crystalline and grown along the < 001 > direction. The optical studies show that these nanostructures have a direct optical band gap of about 3.34 eV. Therefore, the proposed methodology for the synthesis of vertically aligned NRs on flexible sheets launches a new route in the development of low-cost flexible devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a combination of technologies to provide an Energy-on-Demand (EoD) service to enable low cost innovation suitable for microgrid networks. The system is designed around the low cost and simple Rural Energy Device (RED) Box which in combination with Short Message Service (SMS) communication methodology serves as an elementary proxy for Smart meters which are typically used in urban settings. Further, customer behavior and familiarity in using such devices based on mobile experience has been incorporated into the design philosophy. Customers are incentivized to interact with the system thus providing valuable behavioral and usage data to the Utility Service Provider (USP). Data that is collected over time can be used by the USP for analytics envisioned by using remote computing services known as cloud computing service. Cloud computing allows for a sharing of computational resources at the virtual level across several networks. The customer-system interaction is facilitated by a third party Telecom Service provider (TSP). The approximate cost of the RED Box is envisaged to be under USD 10 on production scale.