423 resultados para high-energy attrition mill
Resumo:
We investigate the expectations for the light Higgs signal in the minimal supersymmetric standard model in different search channels at the LHC. After taking into account dark matter and flavor constraints in the minimal supersymmetric standard model with 11 free parameters as well as LHC results on the Higgs sector, we show that the light Higgs signal in the gamma channel is expected to be at most at the level of the standard model Higgs, while the h -> b (b) over bar from W fusion and/or the h -> tau(tau) over bar can be enhanced. For the main discovery mode, we show that a strong suppression of the signal occurs in two different cases: low M-A or large invisible width. The former is however strongly constrained by the recent LHC results. A more modest suppression is associated with the effect of light supersymmetric particles. Looking for such modification of the Higgs properties and searching directly for supersymmetric partners and pseudoscalar Higgs offer two complementary probes of supersymmetry at the LHC.
Resumo:
A sufficiently long lived warm dark matter could be a source of X-rays observed by satellite based X-ray telescopes. We consider axinos and gravitinos with masses between 1 keV and 100 keV in supersymmetric models with sin all R-parity violation. We show that axino dark matter receives significant constraints from X-ray observations of Chandra and SPI, especially for the lower end of the allowed range of the axino decay constant f(a), while the gravitino dark matter remains unconstrained.
Resumo:
The spatial search problem on regular lattice structures in integer number of dimensions d >= 2 has been studied extensively, using both coined and coinless quantum walks. The relativistic Dirac operator has been a crucial ingredient in these studies. Here, we investigate the spatial search problem on fractals of noninteger dimensions. Although the Dirac operator cannot be defined on a fractal, we construct the quantum walk on a fractal using the flip-flop operator that incorporates a Klein-Gordon mode. We find that the scaling behavior of the spatial search is determined by the spectral (and not the fractal) dimension. Our numerical results have been obtained on the well-known Sierpinski gaskets in two and three dimensions.
Resumo:
We study the shape parameters of the Dπ scalar and vector form factors using as input dispersion relations and unitarity for the moments of suitable heavy-light correlators evaluated with Operator Product Expansions, including O(α 2 s) terms in perturbative QCD. For the scalar form factor, a low energy theorem and phase information on the unitarity cut are implemented to further constrain the shape parameters. We finally determine points on the real axis and isolate regions in the complex energy plane where zeros of the form factors are excluded.
Resumo:
Analyticity and unitarity techniques are employed to obtain bounds on the shape parameters of the scalar and vector form factors of semileptonic K l3 decays. For this purpose we use vector and scalar correlators evaluated in pQCD, a low energy theorem for scalar form factor, lattice results for the ratio of kaon and pion decay constants, chiral perturbation theory calculations for the scalar form factor at the Callan-Treiman point and experimental information on the phase and modulus of Kπ form factors up to an energy t in = 1GeV 2. We further derive regions on the real axis and in the complex-energy plane where the form factors cannot have zeros.
Resumo:
The availability of a reliable bound on an integral involving the square of the modulus of a form factor on the unitarity cut allows one to constrain the form factor at points inside the analyticity domain and its shape parameters, and also to isolate domains on the real axis and in the complex energy plane where zeros are excluded. In this lecture note, we review the mathematical techniques of this formalism in its standard form, known as the method of unitarity bounds, and recent developments which allow us to include information on the phase and modulus along a part of the unitarity cut. We also provide a brief summary of some results that we have obtained in the recent past, which demonstrate the usefulness of the method for precision predictions on the form factors.
Resumo:
We compute a certain class of corrections to (specific) screening lengths in strongly coupled non-abelian plasmas using the AdS/CFT correspondence. In this holographic framework, these corrections arise from various higher curvature interactions modifying the leading Einstein gravity action. The changes in the screening lengths are perturbative in inverse powers of the `t Hooft coupling or of the number of colors, as can be made precise in the context where the dual gauge theory is superconformal. We also compare the results of these holographic calculations to lattice results for the analogous screening lengths in QCD. In particular, we apply these results within the program of making quantitative comparisons between the strongly coupled quark-gluon plasma and holographic descriptions of conformal field theory. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Neutralino dark matter in supersymmetric models is revisited in the presence of flavor violation in the soft supersymmetry breaking sector. We focus on flavor violation the sleptonic sector and study the implications for the co-annihilation regions. Flavor is introduced by a single (mu) over tilde (R) - (T) over tilde (R) insertion in the slepton mass matrix. Limits on insertion from BR(tau -> mu + gamma) are weak in some regions of the parameter space where happen within the amplitudes. We look for overlaps in parameter space where the co-annihilation condition as well as the cancellations within the amplitudes occur. mSUGRA, such overlap regions are not existent, whereas they are present in models non-universal Higgs boundary conditions (NUHM). The effect of flavor violation is fold: (a) it shifts the co-annihilation regions towards lighter neutralino masses (b) co-annihilation cross sections would be modified with the inclusion of flavor violating which can contribute significantly. Even if flavor violation is within the presently limits, this is sufficient to modify the thermally averaged cross-sections by about 15)% in mSUGRA and (20{30)% in NUHM, depending on the parameter space. In overlap regions, the flavor violating cross sections become comparable and in some even dominant to the flavor conserving ones. A comparative study of the channels is for mSUGRA and NUHM cases.
Resumo:
Experimental crystal structures of mono and polyfluorinated benzoic acids correspond to high energy computed crystal structures of benzoic acid itself, thereby permitting access to its structural landscape.
Resumo:
Lepton masses and mixing angles via localization of 5-dimensional fields in the bulk are revisited in the context of Randall-Sundrum models. The Higgs is assumed to be localized on the IR brane. Three cases for neutrino masses are considered: (a) The higher-dimensional neutrino mass operator (LH.LH), (b) Dirac masses, and (c) Type I seesaw with bulk Majorana mass terms. Neutrino masses and mixing as well as charged lepton masses are fit in the first two cases using chi(2) minimization for the bulk mass parameters, while varying the O(1) Yukawa couplings between 0.1 and 4. Lepton flavor violation is studied for all the three cases. It is shown that large negative bulk mass parameters are required for the right-handed fields to fit the data in the LH.LH case. This case is characterized by a very large Kaluza-Klein (KK) spectrum and relatively weak flavor-violating constraints at leading order. The zero modes for the charged singlets are composite in this case, and their corresponding effective 4-dimensional Yukawa couplings to the KK modes could be large. For the Dirac case, good fits can be obtained for the bulk mass parameters, c(i), lying between 0 and 1. However, most of the ``best-fit regions'' are ruled out from flavor-violating constraints. In the bulk Majorana terms case, we have solved the profile equations numerically. We give example points for inverted hierarchy and normal hierarchy of neutrino masses. Lepton flavor violating rates are large for these points. We then discuss various minimal flavor violation schemes for Dirac and bulk Majorana cases. In the Dirac case with minimal-flavor-violation hypothesis, it is possible to simultaneously fit leptonic masses and mixing angles and alleviate lepton flavor violating constraints for KK modes with masses of around 3 TeV. Similar examples are also provided in the Majorana case.
Resumo:
We study electronic transport across a helical edge state exposed to a uniform magnetic ((B) over right arrow) field over a finite length. We show that this system exhibits Fabry-Perot-type resonances in electronic transport. The intrinsic spin anisotropy of the helical edge states allows us to tune these resonances by changing the direction of the (B) over right arrow field while keeping its magnitude constant. This is in sharp contrast to the case of nonhelical one-dimensional electron gases with a parabolic dispersion, where similar resonances do appear in individual spin channels (up arrow and down arrow) separately which, however, cannot be tuned by merely changing the direction of the (B) over right arrow field. These resonances provide a unique way to probe the helical nature of the theory. We study the robustness of these resonances against a possible static impurity in the channel.
Resumo:
Recently it has been shown that the wave equations of bosonic higher spin fields in the BTZ background can be solved exactly. In this work we extend this analysis to fermionic higher spin fields. We solve the wave equations for arbitrary half-integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. These quasinormal modes are shown to agree precisely with the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We also obtain an expression for the 1-loop determinant for the Euclidean non-rotating BTZ black hole in terms of the quasinormal modes which agrees with that obtained by integrating the heat kernel found by group theoretic methods.
Resumo:
Quantum fields written on noncommutative spacetime (Groenewold-Moyal plane) obey twisted commutation relations. In this paper we show that these twisted commutation relations result in Hanbury-Brown Twiss (HBT) correlations that are distinct from that for ordinary bosonic or fermionic fields, and hence can provide useful information about underlying noncommutative nature of spacetime. The deviation from usual bosonic/fermionic statistics becomes pronounced at high energies, suggesting that a natural place is to look at Ultra High Energy Cosmic Rays (UHECRs). Since the HBT correlations are sensitive only to the statistics of the particles, observations done with UHECRs are capable of providing unambiguous signatures of noncommutativity, with-out any detailed knowledge of the mechanism and source of origin of UHECRs.
Resumo:
Nonextremal solution with warped resolved-deformed conifold background is important to study the infrared limit of large N thermal QCD. Earlier works in this direction have not taken into account all the backreactions on the geometry, namely from the branes, fluxes, and black-hole carefully. In the present work we make some progress in this direction by solving explicitly the supergravity equations of motions in the presence of the backreaction from the black hole. The backreactions from the branes and the fluxes on the other hand and to the order that we study, are comparatively suppressed. Our analysis reveal, among other things, how the resolution parameter would depend on the horizon radius and how the renormalization group flows of the coupling constants should be understood in these scenarios, including their effects on the background three-form fluxes. We also study the effect of switching on a chemical potential in the background and, in a particularly simplified scenario, compute the actual value of the chemical potential for our case.