245 resultados para fracture prediction
Resumo:
The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.
Resumo:
The mode I fracture toughness, K-Ic, of ductile bulk metallic glasses (BMGs) exhibits a high degree of specimen-to-specimen variability. By conducting fracture experiments in modes I and II, we demonstrate that the observed high variability in mode I, vis-a-vis mode II, is a result of highly variable propensity for the conversion of shear bands into cracks in mode I whereas in mode II, crack growth direction is fixed. Thus, the measured variability in K-Ic is intrinsic to the nature of BMGs. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Land surface temperature (LST) is an important variable in climate, hydrologic, ecological, biophysical and biochemical studies (Mildrexler et al., 2011). The most effective way to obtain LST measurements is through satellites. Presently, LST from moderate resolution imaging spectroradiometer (MODIS) sensor is applied in various fields due to its high spatial and temporal availability over the globe, but quite difficult to provide observations in cloudy conditions. This study evolves of prediction of LST under clear and cloudy conditions using microwave vegetation indices (MVIs), elevation, latitude, longitude and Julian day as inputs employing an artificial neural network (ANN) model. MVIs can be obtained even under cloudy condition, since microwave radiation has an ability to penetrate through clouds. In this study LST and MVIs data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS and advanced microwave scanning radiometer (AMSR-E) sensors of aqua satellite respectively. Separate ANN models were trained and tested for the grid cells for which both LST and MVI were available. The performance of the models was evaluated based on standard evaluation measures. The best performing model was used to predict LST where MVIs were available. Results revealed that predictions of LST using ANN are in good agreement with the observed values. The ANN approach presented in this study promises to be useful for predicting LST using satellite observations even in cloudy conditions. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
A closed-form expression for the dual of dissipation potential is derived within the framework of irreversible thermodynamics using the principles of dimensional analysis and self-similarity. Through this potential, a damage evolution law is proposed for concrete under fatigue loading using the concepts of damage mechanics in conjunction with fracture mechanics. The proposed law is used to compute damage in a volume element when a member is subjected to fatigue loading. The evolution of damage from microcracking to macrocracking of the entire member is captured through a series of volume elements failing one after the other. The number of loading cycles to failure of the member is obtained as the summation of number of cycles to failure for each individual volume element. A parametric study is conducted to determine the effect of the size of the volume element on the model's prediction of fatigue life. A global damage index is also defined, and the residual moment carrying capacity of damaged beams is evaluated. Through a deterministic sensitivity analysis, it is found that the load range and maximum aggregate size are the most influencing parameters on the fatigue life of a plain concrete beam.
Resumo:
Prediction of queue waiting times of jobs submitted to production parallel batch systems is important to provide overall estimates to users and can also help meta-schedulers make scheduling decisions. In this work, we have developed a framework for predicting ranges of queue waiting times for jobs by employing multi-class classification of similar jobs in history. Our hierarchical prediction strategy first predicts the point wait time of a job using dynamic k-Nearest Neighbor (kNN) method. It then performs a multi-class classification using Support Vector Machines (SVMs) among all the classes of the jobs. The probabilities given by the SVM for the class predicted using k-NN and its neighboring classes are used to provide a set of ranges of predicted wait times with probabilities. We have used these predictions and probabilities in a meta-scheduling strategy that distributes jobs to different queues/sites in a multi-queue/grid environment for minimizing wait times of the jobs. Experiments with different production supercomputer job traces show that our prediction strategies can give correct predictions for about 77-87% of the jobs, and also result in about 12% improved accuracy when compared to the next best existing method. Experiments with our meta-scheduling strategy using different production and synthetic job traces for various system sizes, partitioning schemes and different workloads, show that the meta-scheduling strategy gives much improved performance when compared to existing scheduling policies by reducing the overall average queue waiting times of the jobs by about 47%.
Resumo:
Fracture toughness measurements at the small scale have gained prominence over the years due to the continuing miniaturization of structural systems. Measurements carried out on bulk materials cannot be extrapolated to smaller length scales either due to the complexity of the microstructure or due to the size and geometric effect. Many new geometries have been proposed for fracture property measurements at small-length scales depending on the material behaviour and the type of device used in service. In situ testing provides the necessary environment to observe fracture at these length scales so as to determine the actual failure mechanism in these systems. In this paper, several improvements are incorporated to a previously proposed geometry of bending a doubly clamped beam for fracture toughness measurements. Both monotonic and cyclic loading conditions have been imposed on the beam to study R-curve and fatigue effects. In addition to the advantages that in situ SEM-based testing offers in such tests, FEM has been used as a simulation tool to replace cumbersome and expensive experiments to optimize the geometry. A description of all the improvements made to this specific geometry of clamped beam bending to make a variety of fracture property measurements is given in this paper.
Resumo:
In this work, Mode-I fracture experiments are conducted using notched compact tension specimens machined from a rolled AZ31 Mg alloy plate having near-basal texture with load applied along rolling direction (RD) and transverse direction (TD). Moderately high notched fracture toughness of J(C) similar to 46 N/mm is obtained in both RD and TD specimens. Fracture surface shows crack tunneling at specimen mid-thickness and extensive shear lips near the free surface. Dimples are observed from SEM fractographs suggesting ductile fracture. EBSD analysis shows profuse tensile twinning in the ligament ahead of the notch. It is shown that tensile twinning plays a dual role in enhancing the toughness in the notched fracture specimens with reduced triaxiality. It provides significant dissipation in the background plastic zone and imparts hardening to the material surrounding the fracture process zone via operation of several mechanisms which retards micro-void growth and coalescence. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
An energy approach within the framework of thermodynamics is used to model the fatigue process in plain concrete. Fatigue crack growth is an irreversible process associated with an irreversible entropy gain. A closed-form expression for entropy generated during fatigue in terms of energy dissipated is derived using principles of dimensional analysis and self-similarity. An increase in compliance is considered as a measure of damage accumulated during fatigue. The entropy at final fatigue failure is shown to be independent of loading and geometry and is proposed as a material property. A relationship between energy dissipated and number of cycles of fatigue loading is obtained. (C) 2015 American Society of Civil Engineers.
Resumo:
Fatigue damage in concrete is characterized by the simultaneous presence of micro and macrocracks. The theory of fracture mechanics conveniently handles the propagation of macrocracks, whereas damage mechanics precisely describes the state of microcracking. This paper provides a platform to correlate fracture mechanics and damage mechanics theories through an energy equivalence within a thermodynamic framework by equating the energy dissipated according to each theory. Through this correlation, damage corresponding to a given crack length could be obtained, and alternatively a discrete crack could be transformed into an equivalent damage zone. The results are validated using available experimental data on concrete fatigue including stiffness degradation and acoustic emission. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a probabilistic prediction based approach for providing Quality of Service (QoS) to delay sensitive traffic for Internet of Things (IoT). A joint packet scheduling and dynamic bandwidth allocation scheme is proposed to provide service differentiation and preferential treatment to delay sensitive traffic. The scheduler focuses on reducing the waiting time of high priority delay sensitive services in the queue and simultaneously keeping the waiting time of other services within tolerable limits. The scheme uses the difference in probability of average queue length of high priority packets at previous cycle and current cycle to determine the probability of average weight required in the current cycle. This offers optimized bandwidth allocation to all the services by avoiding distribution of excess resources for high priority services and yet guaranteeing the services for it. The performance of the algorithm is investigated using MPEG-4 traffic traces under different system loading. The results show the improved performance with respect to waiting time for scheduling high priority packets and simultaneously keeping tolerable limits for waiting time and packet loss for other services. Crown Copyright (C) 2015 Published by Elsevier B.V.
Resumo:
Numerical simulations were performed of experiments from a cascade of stator blades at three low Reynolds numbers representative of flight conditions. Solutions were assessed by comparing blade surface pressures, velocity and turbulence intensity along blade normals at several stations along the suction surface and in the wake. At Re = 210,000 and 380,000 the laminar boundary layer over the suction surface separates and reattaches with significant turbulence fluctuations. A new 3-equation transition model, the k-k(L)-omega model, was used to simulate this flow. Predicted locations of the separation bubble, and profiles of velocity and turbulence fluctuations on blade-normal lines at various stations along the blade were found to be quite close to measurements. Suction surface pressure distributions were not as close at the lower Re. The solution with the standard k-omega SST model showed significant differences in all quantities. At Re = 640,000 transition occurs earlier and it is a turbulent boundary layer that separates near the trailing edge. The solution with the Reynolds stress model was found to be quite close to the experiment in the separated region also, unlike the k-omega SST solution. Three-dimensional computations were performed at Re = 380,000 and 640,000. In both cases there were no significant differences between the midspan solution from 3D computations and the 2D solutions. However, the 3D solutions exhibited flow features observed in the experiments the nearly 2D structure of the flow over most of the span at 380,000 and the spanwise growth of corner vortices from the endwall at 640,000.
Resumo:
Fatigue damage in concrete is characterized by the simultaneous presence of micro and macrocracics. The theory of fracture mechanics conveniently handles the propagation of macrocracks, whereas damage mechanics precisely describes the state of microcracking. This paper provides a platform to correlate fracture mechanics and damage mechanics theories through an energy equivalence within a thermodynamic framework by equating the energy dissipated according to each theory. Through this correlation, damage corresponding to a given crack length could be obtained, and alternatively a discrete crack could be transformed into an equivalent damage zone. The results are validated using available experimental data on concrete fatigue including stiffness degradation and acoustic emission. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Several soil microbes are present in the rhizosphere zone, especially plant growth promoting rhizobacteria (PGPR), which are best known for their plant growth promoting activities. The present study reflects the effect of gold nanoparticles (GNPs) at various concentrations on the growth of PGPR. GNPs were synthesized chemically, by reduction of HAuCl 4, and further characterized by UV-Vis spectroscopy, X-ray diffraction technique (XRD), and transmission electron microscopy (TEM), etc. The impact of GNPs on PGPR was investigated by Clinical Laboratory Standards Institute (CLSI) recommended Broth-Microdilution technique against four selected PGPR viz., Pseudomonas fluorescens, Bacillus subtilis, Paenibacillus elgii, and Pseudomonas putida. Neither accelerating nor reducing impact was observed in P. putida due to GNPs. On the contrary, significant increase was observed in the case of P. fluorescens, P. elgii, and B. subtilis, and hence, GNPs can be exploited as nano-biofertilizers.
Resumo:
Speech polarity detection is a crucial first step in many speech processing techniques. In this paper, an algorithm is proposed that improvises the existing technique using the skewness of the voice source (VS) signal. Here, the integrated linear prediction residual (ILPR) is used as the VS estimate, which is obtained using linear prediction on long-term frames of the low-pass filtered speech signal. This excludes the unvoiced regions from analysis and also reduces the computation. Further, a modified skewness measure is proposed for decision, which also considers the magnitude of the skewness of the ILPR along with its sign. With the detection error rate (DER) as the performance metric, the algorithm is tested on 8 large databases and its performance (DER=0.20%) is found to be comparable to that of the best technique (DER=0.06%) on both clean and noisy speech. Further, the proposed method is found to be ten times faster than the best technique.
Resumo:
Interannual variation of Indian summer monsoon rainfall (ISMR) is linked to El Nino-Southern oscillation (ENSO) as well as the Equatorial Indian Ocean oscillation (EQUINOO) with the link with the seasonal value of the ENSO index being stronger than that with the EQUINOO index. We show that the variation of a composite index determined through bivariate analysis, explains 54% of ISMR variance, suggesting a strong dependence of the skill of monsoon prediction on the skill of prediction of ENSO and EQUINOO. We explored the possibility of prediction of the Indian rainfall during the summer monsoon season on the basis of prior values of the indices. We find that such predictions are possible for July-September rainfall on the basis of June indices and for August-September rainfall based on the July indices. This will be a useful input for second and later stage forecasts made after the commencement of the monsoon season.