244 resultados para circular dichroism spectroscopy
Resumo:
We report a precise measurement of the hyperfine interval in the 2P(1/2) state of Li-7. The transition from the ground state (D-1 line) is accessed using a diode laser and the technique of saturated-absorption spectroscopy in hot Li vapor. The interval is measured by locking an acousto-optic modulator to the frequency difference between the two hyperfine peaks. The measured interval of 92.040(6) MHz is consistent with an earlier measurement reported by us using an atomic-beam spectrometer Das and Natarajan, J. Phys. B 41, 035001 (2008)]. The interval yields the magnetic dipole constant in the P-1/2 state as A = 46.047(3), which is discrepant from theoretical calculations by > 80 kHz.
Resumo:
A dual beam excitation-depletion pulse technique is proposed for photobleaching reduced fluorescence correlation spectroscopy (FCS). Excitation pulse promote the molecules to the excited singlet state (S-1), a fraction of that population goes to energetically favorable metastable triplet state (T-1) due to strong intersystem crossing. The depletion pulse followed by excitation pulse instantaneously depletes the triplet states thereby recycling the bleached molecules back to the ground state (S-0). FCS study on diffusing Fluorescein and Rh6G molecules show more than 95% reduction in triplet state population and the associated photobleaching. (c) 2010 American Institute of Physics.
Resumo:
The active structural component of a capacitive micromachined ultrasonic transducer (CMUT) is the top plate which vibrates under the influence of a time-varying electrostatic force thereby producing ultrasound waves of the desired frequency in the surrounding medium. Analysis of MEMS devices which rely on electrostatic actuation is complicated due to the fact that the structural deformations alter the electrostatic forces, which redistribute and modify the applied loads. Hence, it becomes imperative to consider the electrostatics-structure coupling aspect in the design of these devices. This paper presents an approximate analytical solution for the static deflection of a thin, clamped circular plate caused by electrostatic forces which are inherently nonlinear. Traditionally, finite element simulations using some commercial software such as ANSYS are employed to determine the structural deflections caused by electrostatic forces. Since the structural deformation alters the electrostatic field, a coupled-field simulation is required wherein the electrostatic mesh is continuously updated to coincide with the deflection of the structure. Such simulations are extremely time consuming, in addition to being nontransparent and somewhat hard to implement. We employ the classical thin-plate theory which is adequate when the ratio of the diameter to thickness of the plate is very large, a situation commonly prevalent in many MEMS devices, especially the CMUTs. We solve the thin-plate electrostatic-elastic equation using the Galerkin-weighted residual technique, under the assumption that the deflections are small in comparison to the thickness of the plate. The evaluation of the electrostatic force between the two plates is simplified due to the fact that the electrostatic gap is much smaller than the lateral dimensions of the device. The results obtained are compared to those found from ANSYS simulations and an excellent agreement is observed between the two. The pull-in voltage predicted by our model is close to the value predicted by ANSYS simulations.
Resumo:
We have measured the frequency-dependent real index of refraction and extinction coefficient (and hence the complex dielectric function) of a free-standing double-walled carbon nanotube film of thickness 200 nm by using terahertz time domain spectroscopy in the frequency range 0.1 to 2.5 THz. The real index of refraction and extinction coefficient have very high values of approximately 52 and 35, respectively, at 0.1 THz, which decrease at higher frequencies. Two low-frequency phonon modes of the carbon nanotubes at 0.45 and 0.75 THz were clearly observed for the first time in the real and imaginary parts of the complex dielectric function along with a broad resonance centred at around 1.45 THz, the latter being similar to that in single-walled carbon nanotubes assigned to electronic excitations. Our experiments bring out a possible application of double-walled carbon nanotube films as a neutral density filter in the THz range.
Resumo:
X-ray and ultraviolet photoelectron spectroscopy as well as x-ray absorption spectroscopy have been employed to investigate transition metal oxide perovskites of the general formula ABOs (A=La or rare-earth ion, B=trivalent transition metalion). Systematics in the core levels and in the valence bands in the series of LaBOa compounds have been discussed. Lanthanum chemical shifts in the x-ray absorption spectra in this series show interesting trends. Photoelectron spectra of the solid solutions, LaNil_x Coxes, LaNix_x FexO8 and LaFel_x Coxes show that the rigid band model is applicable to these systems. It is shown that x-ray photoelectron spectroscopy can be employed to identify multiple oxidation states of transition metal ions in oxide perovskites.
Resumo:
The broadband behaviour of a three-layer electromagnetically coupled circular microstrip antenna is investigated experimentally. The effects of interlayer spacings and the thickness of the parasitic layers on the impedance bandwidth, 3 dB beamwidth and pattern shape, are studied. Experiments show that this structure can provide a frequency bandwidth as high as 20% with a low crosspolarisation level and a moderately high gain.
Resumo:
Photoelectron spectroscopy (PES) provides valuable information on the ionization energies of atoms and molecules. The ionization energy (IE) is given by the relation.hv = IE + T where hv is t h e energy of the radiation and T i s the kinetic energy of the electron. The IEs are directly related to the orbital energies (Koopmans' theorem). By employing UV radiation (HeI. 21.2 eV. or HeII. 40.8 eV). extensive data on the ionization of valence electrons in organic molecules have been obtained in recent years. These studies of UV photoelectron spectroscopy. originated by Turner, have provided a direct probe into the energy levels of organic molecules. Molecular orbital calculations of various degrees of sophistication are generally employed to make assignments of the PES bands. Analysis of the vibrational structure of PES bands has not only provided structural information on the molecular ions, but has also been of value in band assignments. Dewar and co-workers [1, 2) presented summaries of available PES data on organic molecules in 1969 and 1970. Turner et al. [3] published a handbook of Hel spectra of organic molecules in 1970. Since then, a few books [4-7] discussing the principles and applications of UV photoelectron spectroscopy have appeared of which special mention should be made of the recent article by Heilbronner and Maier [7]. There has, however, been no comprehensive review of the vast amount of data on the UV-PES of organic molecules published in the literature since 1970.
Resumo:
We have developed the technique of thermal fluctuation spectroscopy to measure the thermal fluctuations in a system. This technique is particularly useful to study the denaturation dynamics of biomolecules like DNA. Here we present a study of the thermal fluctuations during the thermal denaturation (or melting) of double-stranded DNA. We find that the thermal denaturation of heteropolymeric DNA is accompanied by large, non-Gaussian thermal fluctuations. The thermal fluctuations show a two-peak structure as a function of temperature. Calculations of enthalpy exchanged show that the first peak comes from the denaturation of AT rich regions and the second peak from denaturation of GC rich regions. The large fluctuations are almost absent in homopolymeric DNA. We suggest that bubble formation and cooperative opening and closing dynamics of basepairs causes the additional fluctuation at the first peak and a large cooperative transition from a partially molten DNA to a completely denatured state causes the additional fluctuation at the second peak.
Resumo:
A detailed theoretical analysis of flow through a quadrant plate weir is made in the light of the generalized theory of proportional weirs, using a numerical optimization procedure. It is shown that the flow through the quadrant plate weir has a linear discharge-head relationship valid for certain ranges of head. It is shown that the weir is associated with a reference plane or datum from which all heads are reckoned.Further, it is shown that the measuring range of the quadrant plate weir can be considerably enhanced by extending the tangents to the quadrants at the terminals of the quadrant plate weir. The importance of this weir (when the datum of the weir lies below its crest) as an outlet weir for grit chambers is highlighted. Experiments show excellent agreement with the theory by giving a constant average coefficient of discharge.
Resumo:
Alkali metal perchlorates (KClO4, RbClO4, and CsClO4) undergo a structural phase transition from the orthorhombic to the cubic phase at elevated temperatures. A detailed dielectric study of these crystals across the phase transition is carried out at different frequencies. The crystals are found to exhibit pronounced dielectric dispersion in the kHz frequency range. The results support the view that these transitions are of order–disorder type. The dielectric behaviour at temperatures above Tc is discussed in terms of modulus spectroscopy. An estimate of conductivity relaxation times above the phase transition temperatures made from modulus spectroscopy data gives values of 3.1, 12.2 and 17.7 μs for KClO4, RbClO4, and CsClO4, respectively.
Resumo:
The nature of the chemisorbed states of nitrogen on various transition metal surfaces is discussed comprehensively on the basis of the results of electron spectroscopic investigations augmented by those from other techniques such as LEED and thermal desorption. A brief discussion of the photoemission spectra of free N2, a comparison of adsorbed N2 and CO as well as of physisorption of N2 on metal surfaces is also presented. We discuss the chemisorption of N2 on the surfaces of certain metals (e.g. Ni, Fe, Ru and W) in some detail, paying considerable attention to the effect of electropositive and electronegative surface modifiers. Features of the various chemisorbed states (one or more weakly chemisorbed gamma-states, strongly chemisorbed alpha-states with bond orders between 1 and 2. and dissociative chemisorbed beta-states) on different surfaces are described and relations between them indicated. While the gamma-state could be a precursor of the alpha-state, the alpha-state could be the precursor of the beta-state and this kind of information is of direct relevance to ammonia synthesis. The nature of adsorption of N2 on the surfaces of some metals (e.g. Cr, Co) deserves further study and such investigations might as well suggest alternative catalysts for ammonia synthesis.
Resumo:
The long-range deuterium isotope effects on13C nuclear shielding are physically not yet completely understood. Two existing models for explaining these effects, vibrational and substituent, are compared here. The vibrational model is based on the Born-Oppenheimer approximation, but it can explain only one-bond deuterium effects. To the contrary, the substituent model may explain many long-range isotope effects, but it is controversial due to the assumption of some distinct electronic properties of isotopes. We explain how long-range deuterium isotope effects may be rationalized by the subtle electronic changes induced by isotope substitution, which does not violate the Born-Oppenheimer approximation.