252 resultados para beam divergence angle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45(a similar to) with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope Yb-174 and the fermionic isotope Yb-171. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new generalized model predictive static programming technique is presented for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. Two key features for its high computational efficiency include one-time backward integration of a small-dimensional weighting matrix dynamics, followed bya static optimization formulation that requires only a static Lagrange multiplier to update the control history. It turns out that under Euler integration and rectangular approximation of finite integrals it is equivalent to the existing model predictive static programming technique. In addition to the benchmark double integrator problem, usefulness of the proposed technique is demonstrated by solving a three-dimensional angle-constrained guidance problem for an air-to-ground missile, which demands that the missile must meet constraints on both azimuth and elevation angles at the impact point in addition to achieving near-zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Simulation studies include maneuvering ground targets along with a first-order autopilot lag. Comparison studies with classical augmented proportional navigation guidance and modern general explicit guidance lead to the conclusion that the proposed guidance is superior to both and has a larger capture region as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasive species demonstrate rapid evolution within a very short period of time allowing one to understand the underlying mechanism(s). Lantana camara, a highly invasive plant of the tropics and subtropics, has expanded its range and successfully established itself almost throughout India. In order to uncover the processes governing the invasion dynamics, 218 individuals from various locations across India were characterized with six microsatellites. By integrating genetic data with niche modelling, we examined the effect of drift and environmental selection on genetic divergence. We found multiple genetic clusters that were non-randomly distributed across space. Spatial autocorrelation revealed a strong fine-scale structure, i.e. isolation by distance. In addition, we obtained evidence of inhibitory effects of selection on gene flow, i.e. isolation by environmental distance. Perhaps, local adaptation in response to selection is offsetting gene flow and causing the populations to diverge. Niche models suggested that temperature and precipitation play a major role in the observed spatial distribution of this plant. Based on a non-random distribution of clusters, unequal gene flow among them and different bioclimatic niche requirements, we concluded that the emergence of ecotypes represented by two genetic clusters is underway. They may be locally adapted to specific climatic conditions, and perhaps at the very early stages of ecological divergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the biocompatibility and antibacterial activities of novel SnO2 nanowire coatings prepared by electron-beam (E-Beam) evaporation process at low temperatures were studied. The nanowire coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) methods. The results of in vitro cytotoxicity and cell proliferation assays suggested that the SnO2 nanowire coatings were nontoxic and promoted the proliferation of C2C12 and L929 cells (> 90% viability). Cellular activities, cell adhesion, and lactate dehydrogenase activities were consistent with the superior biocompatibility of the nanowire materials. Notably, the nanowire coating showed potent antibacterial activity against six different bacterial strains. The antibacterial activity of the SnO2 material was attributed to the photocatalytic nature of SnO2. The antibacterial activity and biocompatibility of the newly developed SnO2 nanowire coatings may enable their use as coating materials for biomedical implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hereby report the development of non-polar epi-GaN films of usable quality, on an m-plane sapphire. Generally, it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode. However, we could achieve good quality epi-GaN films by involving controlled steps of nitridation. GaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. The films grown on the nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. X-ray rocking curves confirmed better crystallinity of semipolar as compared to nonpolar GaN which resulted in faster transit response of the device. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 degrees C shows better crystallinity with the rocking curve FWHM 0.67 degrees and 0.85 degrees along 0 0 0 1] and 1 - 1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room temperature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclic AMP receptor protein (CRP) family of transcription factors consists of global regulators of bacterial gene expression. Here, we identify two paralogous CRPs in the genome of Mycobacterium smegmatis that have 78% identical sequences and characterize them biochemically and functionally. The two proteins (MSMEG_0539 and MSMEG_6189) show differences in cAMP binding affinity, trypsin sensitivity, and binding to a CRP site that we have identified upstream of the msmeg_3781 gene. MSMEG_6189 binds to the CRP site readily in the absence of cAMP, while MSMEG_0539 binds in the presence of cAMP, albeit weakly. msmeg_6189 appears to be an essential gene, while the ?msmeg_0539 strain was readily obtained. Using promoter-reporter constructs, we show that msmeg_3781 is regulated by CRP binding, and its transcription is repressed by MSMEG_6189. Our results are the first to characterize two paralogous and functional CRPs in a single bacterial genome. This gene duplication event has subsequently led to the evolution of two proteins whose biochemical differences translate to differential gene regulation, thus catering to the specific needs of the organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the immediate surroundings of our daily life, we can find a lot of places where the energy in the form of vibration is being wasted. Therefore, we have enormous opportunities to utilize the same. Piezoelectric character of matter enables us to convert this mechanical vibration energy into electrical energy which can be stored and used to power other device, instead of being wasted. This work is done to realize both actuator and sensor in a cantilever beam based on piezoelectricity. The sensor part is called vibration energy harvester. The numerical analyses were performed for the cantilever beam using the commercial package ANSYS and MATLAB. The cantilever beam is realized by taking a plate and fixing its one end between two massive plates. Two PZT patches were glued to the beam on its two faces. Experiments were performed using data acquisition system (DAQ) and LABVIEW software for actuating and sensing the vibration of the cantilever beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, three dimensional impact angle control guidance laws are proposed for stationary targets. Unlike the usual approach of decoupling the engagement dynamics into two mutually orthogonal 2-dimensional planes, the guidance laws are derived using the coupled dynamics. These guidance laws are designed using principles of conventional as well as nonsingular terminal sliding mode control theory. The guidance law based on nonsingular terminal sliding mode guarantees finite time convergence of interceptor to the desired impact angle. In order to derive the guidance laws, multi-dimension switching surfaces are used. The stability of the system, with selected switching surfaces, is demonstrated using Lyapunov stability theory. Numerical simulation results are presented to validate the proposed guidance law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deformable mirror (DM) is an important component of an adaptive optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical realignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, it is necessary to determine the aberrations induced by such (curved DM surface) an optical element when placed at an angle (other than 0 deg) of incidence in the optical path. To this effect, we estimate to a first order the aberrations introduced by a DM as a function of the incidence angle and deformation of the DM surface. We record images using a simple setup in which the incident beam is reflected by a 37 channel micro-machined membrane deformable mirror for various angles of incidence. It is observed that astigmatism is a dominant aberration, which was determined by measuring the difference between the tangential and sagittal focal planes. We justify our results on the basis of theoretical simulations and discuss the feasibility of using such a system for adaptive optics considering a trade-off between wavefront correction and astigmatism due to deformation. (C) 2015 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-power requirements of contemporary sensing technology attract research on alternate power sources that can replace batteries. Energy harvesters absorb ambient energy and function as power sources for sensors and other low-power devices. Piezoelectric bimorphs have been demonstrating the preeminence in converting the mechanical energy in ambient vibrations into electrical energy. Improving the performance of these harvesters is pivotal as the energy in ambient vibrations is innately low. In this paper, we focus on enhancing the performance of piezoelectric harvesters through a multilayer and, in particular, a multistep configuration. Partial coverage of piezoelectric material in steps along the length of a cantilever beam results in a multistep piezoelectric energy harvester. We also discuss obtaining an approximate deformation curve for the beam with multiple steps in a computationally efficient manner. We find that the power generated by a multistep beam is almost 90% more than that by a multilayer harvester made out of the same volume of polyvinylidinefluoride ( PVDF), further corroborated experimentally. Improvements observed in the power generated prove to be a boon for weakly coupled low profile piezoelectric materials. Thus, in spite of the weak piezoelectric coupling observed in PVDF, its energy harvesting capability can be improved significantly using it in a multistep piezoelectric beam configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Variational Asymptotic Method (VAM) is used for modeling a coupled non-linear electromechanical problem finding applications in aircrafts and Micro Aerial Vehicle (MAV) development. VAM coupled with geometrically exact kinematics forms a powerful tool for analyzing a complex nonlinear phenomena as shown previously by many in the literature 3 - 7] for various challenging problems like modeling of an initially twisted helicopter rotor blades, matrix crack propagation in a composite, modeling of hyper elastic plates and various multi-physics problems. The problem consists of design and analysis of a piezocomposite laminate applied with electrical voltage(s) which can induce direct and planar distributed shear stresses and strains in the structure. The deformations are large and conventional beam theories are inappropriate for the analysis. The behavior of an elastic body is completely understood by its energy. This energy must be integrated over the cross-sectional area to obtain the 1-D behavior as is typical in a beam analysis. VAM can be used efficiently to approximate 3-D strain energy as closely as possible. To perform this simplification, VAM makes use of thickness to width, width to length, width multiplied by initial twist and strain as small parameters embedded in the problem definition and provides a way to approach the exact solution asymptotically. In this work, above mentioned electromechanical problem is modeled using VAM which breaks down the 3-D elasticity problem into two parts, namely a 2-D non-linear cross-sectional analysis and a 1-D non-linear analysis, along the reference curve. The recovery relations obtained as a by-product in the cross-sectional analysis earlier are used to obtain 3-D stresses, displacements and velocity contours. The piezo-composite laminate which is chosen for an initial phase of computational modeling is made up of commercially available Macro Fiber Composites (MFCs) stacked together in an arbitrary lay-up and applied with electrical voltages for actuation. The expressions of sectional forces and moments as obtained from cross-sectional analysis in closed-form show the electro-mechanical coupling and relative contribution of electric field in individual layers of the piezo-composite laminate. The spatial and temporal constitutive law as obtained from the cross-sectional analysis are substituted into 1-D fully intrinsic, geometrically exact equilibrium equations of motion and 1-D intrinsic kinematical equations to solve for all 1-D generalized variables as function of time and an along the reference curve co-ordinate, x(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fracture toughness measurements at the small scale have gained prominence over the years due to the continuing miniaturization of structural systems. Measurements carried out on bulk materials cannot be extrapolated to smaller length scales either due to the complexity of the microstructure or due to the size and geometric effect. Many new geometries have been proposed for fracture property measurements at small-length scales depending on the material behaviour and the type of device used in service. In situ testing provides the necessary environment to observe fracture at these length scales so as to determine the actual failure mechanism in these systems. In this paper, several improvements are incorporated to a previously proposed geometry of bending a doubly clamped beam for fracture toughness measurements. Both monotonic and cyclic loading conditions have been imposed on the beam to study R-curve and fatigue effects. In addition to the advantages that in situ SEM-based testing offers in such tests, FEM has been used as a simulation tool to replace cumbersome and expensive experiments to optimize the geometry. A description of all the improvements made to this specific geometry of clamped beam bending to make a variety of fracture property measurements is given in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Branch divergence is a very commonly occurring performance problem in GPGPU in which the execution of diverging branches is serialized to execute only one control flow path at a time. Existing hardware mechanism to reconverge threads using a stack causes duplicate execution of code for unstructured control flow graphs. Also the stack mechanism cannot effectively utilize the available parallelism among diverging branches. Further, the amount of nested divergence allowed is also limited by depth of the branch divergence stack. In this paper we propose a simple and elegant transformation to handle all of the above mentioned problems. The transformation converts an unstructured CFG to a structured CFG without duplicating user code. It incurs only a linear increase in the number of basic blocks and also the number of instructions. Our solution linearizes the CFG using a predicate variable. This mechanism reconverges the divergent threads as early as possible. It also reduces the depth of the reconvergence stack. The available parallelism in nested branches can be effectively extracted by scheduling the basic blocks to reduce the effect of stalls due to memory accesses. It can also increase execution efficiency of nested loops with different trip counts for different threads. We implemented the proposed transformation at PTX level using the Ocelot compiler infrastructure. We evaluated the technique using various benchmarks to show that it can be effective in handling the performance problem due to divergence in unstructured CFGs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the Ramsey separated oscillatory fields technique in a 400 degrees C thermal beam of ytterbium (Yb) atoms to measure the Larmor precession frequency (and hence the magnetic field) with high precision. For the experiment, we use the strongly allowed S-1(0) P-1(1) transition at 399 nm, and choose the odd isotope Yb-171 with nuclear spin I = 1/2, so that the ground state has only two magnetic sublevels m(F) = +/- 1/2. With a magnetic field of 22.2 G and a separation of about 400 mm between the oscillatory fields, the central Ramsey fringe is at 16.64 kHz and has a width of 350 Hz. The technique can be readily adapted to a cold atomic beam, which is expected to give more than an order-of-magnitude improvement in precision. The signal-to-noise ratio is comparable to other techniques of magnetometry; therefore it should be useful for all kinds of precision measurements such as searching for a permanent electric dipole moment in atoms.