267 resultados para Z-source inverter
Resumo:
The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.
Resumo:
In this paper, a current error space vector (CESV)-based hysteresis current controller for a multilevel 12-sided voltage space vector-based inverter-fed induction motor (IM) drive is proposed. The proposed controller gives a nearly constant switching frequency operation throughout different speeds in the linear modulation region. It achieves the elimination of 6n +/- 1, n = odd harmonics from the phase voltages and currents in the entire modulation range, with an increase in the linear modulation range. It also exhibits fast dynamic behavior under different transient conditions and has a simple controller implementation. Nearly constant switching frequency is obtained by matching the steady-state CESV boundaries of the proposed controller with that of a constant switching frequency SVPWM-based drive. In the proposed controller, the CESV reference boundaries are computed online, using the switching dwell time and voltage error vector of each applied vector. These quantities are calculated from estimated sampled reference phase voltages. Vector change is decided by projecting the actual current error along the computed hysteresis space vector boundary of the presently applied vector. The estimated reference phase voltages are found from the stator current error ripple and the parameters of the IM.
Resumo:
A transform approach to network coding was in-troduced by Bavirisetti et al. (arXiv:1103.3882v3 [cs.IT]) as a tool to view wireline networks with delays as k-instantaneous networks (for some large k). When the local encoding kernels (LEKs) of the network are varied with every time block of length k >1, the network is said to use block time varying LEKs. In this work, we propose a Precoding Based Network Alignment (PBNA) scheme based on transform approach and block time varying LEKs for three-source three-destination multiple unicast network with delays (3-S3-D MUN-D). In a recent work, Menget al. (arXiv:1202.3405v1 [cs.IT]) reduced the infinite set of sufficient conditions for feasibility of PBNA in a three-source three-destination instantaneous multiple unicast network as given by Das et al. (arXiv:1008.0235v1 [cs.IT]) to a finite set and also showed that the conditions are necessary. We show that the conditions of Meng et al. are also necessary and sufficient conditions for feasibility of PBNA based on transform approach and block time varying LEKs for 3-S3-D MUN-D.
Resumo:
We consider nonparametric sequential hypothesis testing when the distribution under null hypothesis is fully known and the alternate hypothesis corresponds to some other unknown distribution. We use easily implementable universal lossless source codes to propose simple algorithms for such a setup. These algorithms are motivated from spectrum sensing application in Cognitive Radios. Universal sequential hypothesis testing using Lempel Ziv codes and Krichevsky-Trofimov estimator with Arithmetic Encoder are considered and compared for different distributions. Cooperative spectrum sensing with multiple Cognitive Radios using universal codes is also considered.
Resumo:
We present a study of the environments of extended radio sources in the Australia Telescope Low-Brightness Survey (ATLBS). The radio sources were selected from the ATLBS Extended Source Sample, which is a well defined sample containing the most extended of radio sources in the ATLBS sky survey regions. The environments were analysed using 4-m Cerro-Tololo Inter-American Observatory Blanco telescope observations carried out for ATLBS fields in the Sloan Digital Sky Survey r(') band. We have estimated the properties of the environments using smoothed density maps derived from galaxy catalogues constructed using these optical imaging data. The angular distribution of galaxy density relative to the axes of the radio sources has been quantified by defining anisotropy parameters that are estimated using a new method presented here. Examining the anisotropy parameters for a subsample of extended double radio sources that includes all sources with pronounced asymmetry in lobe extents, we find good evidence for environmental anisotropy being the dominant cause for lobe asymmetry in that higher galaxy density occurs almost always on the side of the shorter lobe, and this validates the usefulness of the method proposed and adopted here. The environmental anisotropy parameters have been used to examine and compare the environments of Fanaroff-Riley Class I (FRI) and Fanaroff-Riley Class II (FRII) radio sources in two redshift regimes (z < 0.5 and z > 0.5). Wide-angle tail sources and head-tail sources lie in the most overdense environments. The head-tail source environments (for the HT sources in our sample) display dipolar anisotropy in that higher galaxy density appears to lie in the direction of the tails. Excluding the head-tail and wide-angle tail sources, subsamples of FRI and FRII sources from the ATLBS appear to lie in similar moderately overdense environments, with no evidence for redshift evolution in the regimes studied herein.
Resumo:
A three-level common-mode voltage eliminated inverter with single dc supply using flying capacitor inverter and cascaded H-bridge has been proposed in this paper. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H-bridge fails, the system can still be operated as a normal three-level inverter at full power. This inverter has many other advantages like use of single dc supply, making it possible for a back-to-back grid-tied converter application, improved reliability, etc.
Resumo:
This paper addresses the problem of localizing the sources of contaminants spread in the environment, and mapping the boundary of the affected region using an innovative swarm intelligence based technique. Unlike most work in this area the algorithm is capable of localizing multiple sources simultaneously while also mapping the boundary of the contaminant spread. At the same time the algorithm is suitable for implementation using a mobile robotic sensor network. Two types of agents, called the source localization agents (or S-agents) and boundary mapping agents (or B-agents) are used for this purpose. The paper uses the basic glowworm swarm optimization (GSO) algorithm, which has been used only for multiple signal source localization, and modifies it considerably to make it suitable for both these tasks. This requires the definition of new behaviour patterns for the agents based on their terminal performance as well as interactions between them that helps the swarm to split into subgroups easily and identify contaminant sources as well as spread along the boundary to map its full length. Simulations results are given to demonstrate the efficacy of the algorithm.
Resumo:
In the present paper, a novel topology for generating a 17-level inverter using three-level flying capacitor inverter and cascaded H-bridge modules with floating capacitors. The proposed circuit is analyzed and various aspects of it are presented in the paper. This circuit is experimentally verified and the results are shown. The stability of the capacitor balancing algorithm has been verified during sudden acceleration. This circuit has many pole voltage redundancies. This circuit has an advantage of balancing all the capacitor voltages instantaneously by switching through the redundancies. Another advantage of this topology is its ability to generate all the 17 pole voltages from a single DC link which enables back to back converter operation. Also, the proposed inverter can be operated at all load power factors and modulation indices. Another advantage is, if one of the H-bridges fail, the inverter can still be operated at full load with reduced number of levels.
Resumo:
Landslide hazards are a major natural disaster that affects most of the hilly regions around the world. In India, significant damages due to earthquake induced landslides have been reported in the Himalayan region and also in the Western Ghat region. Thus there is a requirement of a quantitative macro-level landslide hazard assessment within the Indian subcontinent in order to identify the regions with high hazard. In the present study, the seismic landslide hazard for the entire state of Karnataka, India was assessed using topographic slope map, derived from the Digital Elevation Model (DEM) data. The available ASTER DEM data, resampled to 50 m resolution, was used for deriving the slope map of the entire state. Considering linear source model, deterministic seismic hazard analysis was carried out to estimate peak horizontal acceleration (PHA) at bedrock, for each of the grid points having terrain angle 10A degrees and above. The surface level PHA was estimated using nonlinear site amplification technique, considering B-type NEHRP site class. Based on the surface level PHA and slope angle, the seismic landslide hazard for each grid point was estimated in terms of the static factor of safety required to resist landslide, using Newmark's analysis. The analysis was carried out at the district level and the landslide hazard map for all the districts in the Karnataka state was developed first. These were then merged together to obtain a quantitative seismic landslide hazard map of the entire state of Karnataka. Spatial variations in the landslide hazard for all districts as well as for the entire state Karnataka is presented in this paper. The present study shows that the Western Ghat region of the Karnataka state is found to have high landslide hazard where the static factor of safety required to resist landslide is very high.
Resumo:
A space vector-based hysteresis current controller for any general n-level three phase inverter fed induction motor drive is proposed in this study. It offers fast dynamics, inherent overload protection and low harmonic distortion for the phase voltages and currents. The controller performs online current error boundary calculations and a nearly constant switching frequency is obtained throughout the linear modulation range. The proposed scheme uses only the adjacent voltage vectors of the present sector, similar to space vector pulse-width modulation and exhibits fast dynamic behaviour under different transient conditions. The steps involved in the boundary calculation include the estimation of phase voltages from the current ripple, computation of switching time and voltage error vectors. Experimental results are given to show the performance of the drive at various speeds, effect of sudden change of the load, acceleration, speed reversal and validate the proposed advantages.
Resumo:
Novel switching sequences have been proposed recently for a neutral-point-clamped three-level inverter, controlled effectively as an equivalent two-level inverter. It is shown that the four novel sequences can be grouped into two pairs of sequences. Using each pair of sequences, a hybrid pulsewidth modulation (PWM) technique is proposed, which deploys the two sequences in appropriate spatial regions to reduce the current ripple. Further, a third hybrid PWM technique is proposed which uses all the five sequences (including the conventional sequence) in appropriate spatial regions. Each proposed hybrid PWM is shown, both analytically and experimentally, to outperform its constituent PWM methods in terms of harmonic distortion. In particular, the third proposed hybrid PWM reduces the total harmonic distortion considerably at low- and high-speed ranges of a constant volts-per-hertz induction motor drive, compared to centered space vector PWM.
Resumo:
A series of spectral analyses of surface waves (SASW) tests were conducted on a cement concrete pavement by dropping steel balls of four different values of diameter (D) varying between 25.4 and 76.2 mm. These tests were performed (1) by using different combinations of source to nearest receiver distance (S) and receiver spacing (X), and (2) for two different heights (H) of fall, namely, 0.25 and 0.50 m. The values of the maximum wavelength (lambda(max)) and minimum wavelength (lambda(min)) associated with the combined dispersion curve, corresponding to a particular combination of D and H, were noted to increase almost linearly with an increase in the magnitude of the input source energy (E). A continuous increase in strength and duration of the signals was noted to occur with an increase in the magnitude of D. Based on statistical analysis, two regression equations have been proposed to determine lambda(max) and lambda(min) for different values of source energy. It is concluded that the SASW technique is capable of producing nearly a unique dispersion curve irrespective of (1) diameters and heights of fall of the dropping masses used for producing the vibration, and (2) the spacing between different receivers. The results presented in this paper can be used to provide guidelines for deciding about the input source energy based on the required exploration zone of the pavement. (C) 2014 American Society of Civil Engineers.
Three-dimensional localization of multiple acoustic sources in shallow ocean with non-Gaussian noise
Resumo:
In this paper, a low-complexity algorithm SAGE-USL is presented for 3-dimensional (3-D) localization of multiple acoustic sources in a shallow ocean with non-Gaussian ambient noise, using a vertical and a horizontal linear array of sensors. In the proposed method, noise is modeled as a Gaussian mixture. Initial estimates of the unknown parameters (source coordinates, signal waveforms and noise parameters) are obtained by known/conventional methods, and a generalized expectation maximization algorithm is used to update the initial estimates iteratively. Simulation results indicate that convergence is reached in a small number of (<= 10) iterations. Initialization requires one 2-D search and one 1-D search, and the iterative updates require a sequence of 1-D searches. Therefore the computational complexity of the SAGE-USL algorithm is lower than that of conventional techniques such as 3-D MUSIC by several orders of magnitude. We also derive the Cramer-Rao Bound (CRB) for 3-D localization of multiple sources in a range-independent ocean. Simulation results are presented to show that the root-mean-square localization errors of SAGE-USL are close to the corresponding CRBs and significantly lower than those of 3-D MUSIC. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the Z(gamma) final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving Z(gamma)Z vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by e(+)e(-)Z(gamma) contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.
Resumo:
Let Z(n) denote the ring of integers modulo n. A permutation of Z(n) is a sequence of n distinct elements of Z(n). Addition and subtraction of two permutations is defined element-wise. In this paper we consider two extremal problems on permutations of Z(n), namely, the maximum size of a collection of permutations such that the sum of any two distinct permutations in the collection is again a permutation, and the maximum size of a collection of permutations such that no sum of two distinct permutations in the collection is a permutation. Let the sizes be denoted by s (n) and t (n) respectively. The case when n is even is trivial in both the cases, with s (n) = 1 and t (n) = n!. For n odd, we prove (n phi(n))/2(k) <= s(n) <= n!.2(-)(n-1)/2/((n-1)/2)! and 2 (n-1)/2 . (n-1/2)! <= t (n) <= 2(k) . (n-1)!/phi(n), where k is the number of distinct prime divisors of n and phi is the Euler's totient function.