237 resultados para Water Purification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure of a cyclic water tetramer in channels (pores) formed by self-assembly of N6-methyl-5'-AMP center dot Na-2 molecules is described and a hypothetical model is proposed for growth of water clusters. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-humidity monoclinic lysozyme, resulting from a water-mediated transformation, has one of the lowest solvent contents (22% by volume) observed in a protein crystal. Its structure has been solved by the molecular replacement method and refined to an R value of 0.175 for 7684 observed reflections in the 10–1.75 Å resolution shell. 90% of the solvent in the well ordered crystals could be located. Favourable sites of hydration on the protein surface include side chains with multiple hydrogen-bonding centres, and regions between short hydrophilic side chains and the main-chain CO or NH groups of the same or nearby residues. Major secondary structural features are not disrupted by hydration. However, the free CO groups at the C terminii and, to a lesser extent, the NH groups at the N terminii of helices provide favourable sites for water interactions, as do reverse turns and regions which connect β-structure and helices. The hydration shell consists of discontinuous networks of water molecules, the maximum number of molecules in a network being ten. The substrate-binding cleft is heavily hydrated, as is the main loop region which is stabilized by water interactions. The protein molecules are close packed in the crystals with a molecular coordination number of 14. Arginyl residues are extensively involved in intermolecular hydrogen bonds and water bridges. The water molecules in the crystal are organized into discrete clusters. A distinctive feature of the clusters is the frequent occurrence of three-membered rings. The protein molecules undergo substantial rearrangement during the transformation from the native to the low-humidity form. The main-chain conformations in the two forms are nearly the same, but differences exist in the side-chain conformation. The differences are particularly pronounced in relation to Trp 62 and Trp 63. The shift in Trp 62 is especially interesting as it is also known to move during inhibitor binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A secreted lectin, Rv1419, from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized and the crystals have been characterized. This represents the first X-ray investigation of a lectin or lectin-like molecule from the pathogen. The cubic crystals contain one molecule in the asymmetric unit. Sequence comparisons indicate that the lectin has a beta-trefoil fold and belongs to a well characterized family of carbohydrate-binding modules. Structural analysis of the crystals is in progress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of pumping an aquifer in an aquifer-water table aquitard system is considered, accounting for the elastic properties of both the aquifer and the aquitard, the gravity drainage in the aquitard and treating the water table as an unknown boundary. The coupled partial differential equations are nondimensionalised, yielding three principal parameters governing the problem. The numerical solution of these equations is obtained for a wide range of parameter values. Type curves are generated and their use is illustrated through a field application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-Hydroxybenzoic acid-6-hydroxylase from Micrococcus sp. was purified to homogeneity in a single step using the substrate-mediated interaction of the enzyme with blue-Sepharose. The enzyme was bound to the affinity matrix in the presence of 3-hydroxybenzoic acid and was eluted in its absence. The molecular weight of the purified enzyme is 70,000 with no subunit structure. The flavoenzyme required the exogenous addition of FAD for its complete activity and had a strict preference for NADH over NADPH. The activity of the enzyme was drastically inhibited by Cu2+ and Hg2+ and the inhibition was reversed by thiol reagents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extracellular xylanase was purified to homogeneity from the culture filtrate of the thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce and its properties were studied. A fourfold purification and a yield of 8% were achieved. The molecular-weight of the protein was found to be 22,500 based on electrophoretic mobility and 29,000 by gel filtration behavior. The protein is rich in acidic amino acids, glycine and tyrosine, and poor in sulfur-containing amino acids. The kinetic properties of the enzyme are similar to those of other fungal xylanases. The enzyme shows high affinity toward larchwood xylan (Km = 0.91 mg/ml) and hydrolyzes only xylan. The enzyme becomes inactivated when stored for more than 2 months at −20 °C in the dry state. Such an inactivation has not been reported so far for any xylanase. Using chromatographic techniques, one species of protein differing from the native protein in charge but enzymatically active was isolated in low yields. However, a large molecular-weight species of the protein devoid of enzyme activity was isolated in substantial quantities and further characterized. Based on ultracentrifugation and gel electrophoretic studies, it was concluded that this species may be an aggregate of the native protein and that such an aggregation might be taking place on storage in the dry state at −20 °C, leading to loss in activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An endocellulase (1→4)-β-d-glucan 4-glucanohydrolase was isolated from the culture filtrates of Chaetomium thermophile. The enzyme was homogeneous by PAGE and SDS-PAGE. The molecular weight was 36 000 by SDS-PAGE and 38 000 by gel filtration. It was a glycoprotein. From the amino acid composition, it was found to be rich in glycine, threonine, and aspartic and glutamic acids, but contained only low proportions of histidine and sulfur-containing amino acids. It was optimally active at pH 6 and at 60°. The enzyme did not hydrolyze cellobiose and cellotriose, but hydrolyzed cello-tetraose, -pentaose, and -hexaose at comparable rates. It was specific for molecules containing β-(1→4) linkages. It showed high activity towards amorphous cellulose, and the reaction products contained cellobiose to cellopentaose, showing that it effects random cleavage of cellulose.