250 resultados para Three body charge transfer reaction
Resumo:
A356 alloy melt solidifies partially when it flows down on an oblique plate cooled from bottom by counter flowing water. Columnar dendrites are continuously formed on the plate wall. Because of the forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously by producing semisolid slurry at plate exit. Plate cooling rate provides required extent/amount of solidification whereas plate length enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained is solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets are also heat-treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets are compared. The effects of plate length and plate cooling rate on solidification and microstructure of billets produced by using oblique plate are illustrated. Three different plate lengths (200 mm, 250 mm, 300 mm) associated with three different heat transfer coefficients (1000, 2000 and 2500 W/(m(2).K)) are involved. Plate length of 250 mm with heat transfer coefficient of 2000 W/(m(2).K) gives fine and globular microstructures and is the optimum as there is absolutely no possibility of sticking of slurry to plate wall.
Resumo:
Two hydroxycinnamic acids viz., p-coumaric, and caffeic acids have been extracted and purified from Parthenium hysterophorus, subsequently characterized by elemental analysis, FT-IR, NMR, single crystal X-ray crystallography. The optimized structures of these acids were calculated in terms of density functional theory by Gaussian 09. The validation of experimental and theoretically obtained data for structural parameters such as bond lengths and bond angles has have been carried out to analyze the statistical significance by curve fitting analysis and the values of correlation coefficient found to be 0.985, 0.992, and 0.984, 0.975 in p-coumaric, and caffeic acids, respectively. The calculated HOMO and LUMO energies show the eventual charge transfer interaction within the molecule. Thermal studies were also carried out by thermogravimetry (TG), differential thermogravimetric analysis (DTA), and derivative thermogravimetry (DTG). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Oxovanadium(IV) complexes VO(Fc-tpy)(acac)](ClO4) (1), VO(Fc-tpy)(nap-acac)](ClO4) (2), VO(Fc-tpy)(py-acac)](ClO4) (3) and VO(Ph-tpy)(py-acac)](ClO4) (4) of 4'-ferroceny1-2,2':6',2 `'-terpyridine (Fc-tpy) and 4'-phenyl-2,2':6',2 `'-terpyridine (Ph-tpy) having monoanionic acetylacetonate (acac), naphthylacetylacetonate (nap-acac) or pyrenylacetylacetonate (py-acac) ligand were prepared, characterized and their photocytotoxicity in visible light studied. The ferrocenyl complexes 1-3 showed an intense charge transfer band near 585 nm in DMF and displayed Fc(+)/Fc and V(IV)/V(III) redox couples near 0.66 V and -0.95 V vs. SCE in DMF-0.1 M TBAP. The complexes as avid binders to calf thymus DNA showed significant photocleavage of plasmid DNA in green light (568 nm) forming center dot OH radicals. The complexes that are photocytotoxic in HeLa and MCF-7 cancer cells in visible light (400-700 nm) with low dark toxicity remain nontoxic in normal fibroblast 3T3 cells. ICP-MS and fluorescence microscopic studies show significant cellular uptake of the complexes. Photo-irradiation of the complexes causes apoptotic cell death by ROS as evidenced from the DCFDA assay. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
Ferrocenyl (Fc) conjugates (1-3) of alkylpyridinium cations (E)-N-alkyl-4-2-(ferrocenyl)vinyl]pyridinium bromide (alkyl = n-butyl in 1, N,N,N-triethylbutan-1-aminium bromide in 2, and n-butyltriphenylphosphonium bromide in 3) were prepared and characterized, and their photocytotoxicities and cellular uptakes in HeLa cancer and 3T3 normal cells were studied. The species with a 4-methoxyphenyl moiety (4) instead of Fc was used as a control. The triphenylphosphonium-appended 3 was designed for specific delivery into the mitochondria of the cells. Compounds 1-3 showed metal-to-ligand charge-transfer bands at approximate to 550 nm in phosphate buffered saline (PBS). The Fc(+)/Fc and pyridinium core redox couples were observed at 0.75 and -1.2 V versus a saturated calomel electrode (SCE) in CH2Cl2/0.1 M (nBu(4)N)ClO4. Conjugate 3 showed a significantly higher photocytotoxicity in HeLa cancer cells IC50 = (1.3 +/- 0.2) M] than in normal 3T3 cells IC50 = (27.5 +/- 1.5) M] in visible light (400-700 nm). The positive role of the Fc moiety in 3 was evident from the inactive nature of 4. A JC-1 dye (5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide) assay showed that 3 targets the mitochondria and induces apoptosis by the mitochondrial intrinsic pathway caused by reactive oxygen species (ROS). Annexin/propidium iodide studies showed that 3 induces apoptotic cell death in visible light by ROS generation, as evidenced from dichlorofluorescein diacetate assay. Compounds 1-3 exhibit DNA photocleavage activity through the formation of hydroxyl radicals.
Resumo:
This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes p-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.
Resumo:
A generalized explanation is provided for the existence of the red-and blue-shifting nature of X-Z bonds (Z = H, halogens, chalcogens, pnicogens, etc.) in X-Z center dot center dot center dot Y complexes based on computational studies on a selected set of weakly bonded complexes and analysis of existing literature data. The additional electrons and orbitals available on Z in comparison to H make for dramatic differences between the H-bond and the rest of the Z-bonds. The nature of the X-group and its influence on the X-Z bond length in the parent X-Z molecule largely controls the change in the X-Z bond length on X-Z center dot center dot center dot Y bond formation; the Y-group usually influences only the magnitude of the effects controlled by X. The major factors which control the X-Z bond length change are: (a) negative hyperconjugative donation of electron density from X-group to X-Z sigma* antibonding molecular orbital (ABMO) in the parent X-Z, (b) induced negative hyperconjugation from the lone pair of electrons on Z to the antibonding orbitals of the X-group, and (c) charge transfer (CT) from the Y-group to the X-Z sigma* orbital. The exchange repulsion from the Y-group that shifts partial electron density at the X-Z sigma* ABMO back to X leads to blue-shifting and the CT from the Y-group to the sigma* ABMO of X-Z leads to red-shifting. The balance between these two opposing forces decides red-, zero- or blue-shifting. A continuum of behaviour of X-Z bond length variation is inevitable in X-Z center dot center dot center dot Y complexes.
Resumo:
We investigated the nature of the cohesive energy between graphane sheets via multiple CH center dot center dot center dot HC interactions, using density functional theory (DFT) including dispersion correction (Grimmes D3 approach) computations of n]graphane sigma dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical pi/pi interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (Delta E-F) composed of electrostatic and Pauli repulsion interactions, polarization (Delta E-pol), charge-transfer interaction (Delta E-CT), and dispersion effects (Delta E-disp). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the sigma CH -> sigma*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 angstrom. The Delta E-CT term, which accounts for similar to 15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic glue for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the double faced adhesive tape style of charge transfer interactions was also observed among graphene sheets in which it accounts for similar to 18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH center dot center dot center dot HC interactions, or as a function of the number of C-H bonds.
Resumo:
Iron(III) complexes of pyridoxal (vitamin B6, VB6) or salicylaldehyde Schiff bases and modified dipicolylamines, namely, Fe(B)(L)](NO3) (15), where B is phenyl-N,N-bis((pyridin-2-yl)methyl)methanamine (phbpa in 1), (anthracen-9-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (anbpa in 2, 4) and (pyren-1-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (pybpa in 3, 5) (H2L1 is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylp yridine (13) and H2L2 is 2-(2-hydroxyphenyl-imino)methyl]phenol), were prepared and their uptake in cancer cells and photocytotoxicity were studied. Complexes 4 and 5, having a non-pyridoxal Schiff base, were prepared to probe the role of the pyridoxal group in tumor targeting and cellular uptake. The PF6 salt (1a) of complex 1 is structurally characterized. The complexes have a distorted six-coordinate FeN4O2 core where the metal is in the +3 oxidation state with five unpaired electrons. The complexes display a ligand to metal charge transfer band near 520 and 420 nm from phenolate to the iron(III) center. The photophysical properties of the complexes are explained from the time dependent density functional theory calculations. The redox active complexes show a quasi-reversible Fe(III)/Fe(II) response near -0.3 V vs saturated calomel electrode. Complexes 2 and 3 exhibit remarkable photocytotoxicity in various cancer cells with IC50 values ranging from 0.4 to 5 mu M with 10-fold lower dark toxicity. The cell death proceeded by the apoptotic pathway due to generation of reactive oxygen species upon light exposure. The nonvitamin complexes 4 and 5 display 3-fold lower photocytotoxicity compared to their VB6 analogues, possibly due to preferential and faster uptake of the vitamin complexes in the cancer cells. Complexes 2 and 3 show significant uptake in the endoplasmic reticulum, while complexes 4 and 5 are distributed throughout the cells without any specific localization pattern.
Resumo:
Iron(II) complexes of polypyridyl ligands (B), viz. Fe(B)(2)]Cl-2 (1 and 2) of N, N, N-donor 2-(2-pyridyl)-1,10-phenanthroline (pyphen in 1) and 3-(pyridin-2-yl)dipyrido3,2-a:2',3'-c]phenazine (pydppz in 2), are prepared and characterized. They are 1:2 electrolytes in aqueous DMF. The diamagnetic complexes exhibit metal to ligand charge transfer band near 570 nm in DMF. The complexes are avid binders to calf thymus DNA giving binding constant (K (b)) values of similar to 10(6) M-1 suggesting significant intercalative DNA binding of the complexes due to presence of planar phenanthroline bases. Complex 2 exhibits significant photocytotoxicity in immortalized human keratinocyte cells HaCaT and breast cancer cell line MCF-7 giving IC50 values of 0.08 and 13 mu M in visible light (400-700 nm). Complex 2 shows only minor dark toxicity in HaCaT cells but is non-toxic in dark in MCF-7 cancer cells. The light-induced cellular damage follows apoptotic pathway on generation of reactive oxygen species as evidenced from the dichlorofluorescein diacetate (DCFDA) assay.
Resumo:
Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.
Resumo:
This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy. The photocatalytic properties of the composites of Ag3PO4 with pristine combustion synthesized TiO2 and commercial TiO2 under sunlight were compared. Therefore the studies conducted proved that the novel Ag3PO4/unique combustion synthesis derived TiO2 nanobelt composites exhibited extended light absorption, better charge transfer mechanism and higher generation of hydroxyl and hole radicals. These properties resulted in enhanced photodegradation of dyes and bacteria when compared to the commercial TiO2 nanocomposite. These findings have important implications in designing new photocatalysts for water purification.
Resumo:
Drinking water scarcity is a major issue that needs to be addressed seriously. Water needs to be purified from organic pollutants and bacterial contamination. In this study, sunlight driven photocatalysis for the degradation of dyes and bacterial inactivation has been conducted over TiO2 nanoparticles (CST) and TiO2 nanobelts (CSTNB). TiO2 nanoparticles were synthesized by a solution combustion process using ascorbic acid as a fuel. Acid etched TiO2 nanobelts (CSTNB) were synthesized using combustion synthesized TiO2 as a novel precursor. The mechanism of formation of TiO2 nanobelts was hypothesized. The antibacterial activity of combustion synthesized TiO2 and acid etched TiO2 nanobelts were evaluated against Escherichia coli and compared against commercial TiO2. Various characterization studies like X-ray diffraction analysis, BET surface area analysis, diffused reflectance measurements were performed. Microscopic structures and high resolution images were analyzed using scanning electron microscopy, transmission electron microscopy. The extent of photo-stability and reusability of the catalyst was evaluated by conducting repeated cycles of photo degradation experiments and was compared to the commercial grade TiO2. The reactive radical species responsible for high photocatalytic and antibacterial activity has been determined by performing multiple scavenger reactions. The excellent charge transfer mechanism, high generation of hydroxyl and hole radicals resulted in enhanced photocatalytic activity of the acid etched TiO2 nanobelts compared to commercial TiO2 and nanobelts made from commercial TiO2.
Resumo:
A computational study of the interaction half-sandwich metal fragments (metal=Re/W, electron count=d(6)), containing linear nitrosyl (NO+), carbon monoxide (CO), trifluorophosphine (PF3), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO+. Electron-withdrawing ligands like NO+ lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. (C) 2015 Wiley Periodicals, Inc.
Resumo:
In this study, a minimum, reflection loss of 70 a was achieved, for a 6 mm thick shield (at 17.1 GHz frequency) employing a unique approach. This was accomplished by engineering nanostructures through decoration of magnetic nanopartides (nickel, Ni) onto graphene oxide (GO) sheets. Enhanced electromagnetic (EM) shielding was derived by selectively, localizing the nanoscopic particles in a specific phase of polyethylene (PE)/poly(ethylene oxide) (PEO) blends. By introduction of a conducting inclusion (like multiwall carbon nanotubes, MWNTs) together with the engineered nanostructures (nickel-decorated GO, (GO-Ni), the shielding efficiency can be enhanced significantly in contrast to physically mixing the particles in the blends. For instance, the composites showed a shielding efficiency >25 dB for a combination of MWNTS (3 wt %) and Ni nanoparticles (52 wt %) in PE/PEO blends. However, similar shielding effectiveness could be achieved for a combination of MWNTs (3 wt %) and 10 vol % of GO-Ni where in the effective concentration of Ni was only 19 wt %. The GO-Ni sheets facilitated in an efficient charge transfer as manifested from high electrical conductivity in the blends besides enhancing the permeability in the blends. It is envisioned that GO is simultaneously reduced in the process of synthesizing GO-Ni, and this facilitated in efficient charge transfer between the neighboring CNTs. More interestingly, the blends With MWNTs/GO-Ni attenuated the incoming EM radiation mostly by absorption. This study opens new avenues in designing polyolefin-based lightweight shielding materials by engineering nanostructures for numerous applications.
Resumo:
The collapse of the primordial gas in the density regime similar to 10(8)-10(10) cm(-3) is controlled by the three-body H-2 formation process, in which the gas can cool faster than free-fall time-a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H-2 cooling, the heating due to H-2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.