251 resultados para SWCNT-modified electrodes
Resumo:
We investigate into the limitations of the sum-product algorithm in the probability domain over graphs with isolated short cycles. By considering the statistical dependency of messages passed in a cycle of length 4, we modify the update equations for the beliefs at the variable and check nodes. We highlight an approximate log domain algebra for the modified variable node update to ensure numerical stability. At higher signal-to-noise ratios (SNR), the performance of decoding over graphs with isolated short cycles using the modified algorithm is improved compared to the original message passing algorithm (MPA).
Resumo:
Electrical resistance of both the electrodes of a lead-acid battery increases during discharge due to formation of lead sulfate, an insulator. Work of Metzendorf 1] shows that resistance increases sharply at about 65% conversion of active materials, and battery stops discharging once this critical conversion is reached. However, these aspects are not incorporated into existing mathematical models. Present work uses the results of Metzendorf 1], and develops a model that includes the effect of variable resistance. Further, it uses a reasonable expression to account for the decrease in active area during discharge instead of the empirical equations of previous work. The model's predictions are compared with observations of Cugnet et al. 2]. The model is as successful as the non-mechanistic models existing in literature. Inclusion of variation in resistance of electrodes in the model is important if one of the electrodes is a limiting reactant. If active materials are stoichiometrically balanced, resistance of electrodes can be very large at the end of discharge but has only a minor effect on charging of batteries. The model points to the significance of electrical conductivity of electrodes in the charging of deep discharged batteries. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.
Resumo:
Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 degrees C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 mu M. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.
Resumo:
In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 degrees C was carried out and compared with the behavior at room temperature and 48 degrees C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5-4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Herein, we present six new lipopolymers based on low molecular weight, branched polyethylenimine (BPEI 800 Da) which are hydrophobically modified using ferrocene terminated alkyl tails of variable lengths. The effects of degree of grafting, spacer length and the redox state of ferrocene in the lipopolymers on the self assembly properties were investigated in detail by TEM, AFM, DLS and zeta potential measurements. The assemblies displayed an oxidation induced increase in the size of the aggregates. The co-liposomes comprising the lipopolymer and a helper lipid, 1,2-dioleoyl phosphatidyl ethanolamine (DOPE), showed excellent gene (pDNA) delivery capability in a serum containing environment in two cancer cell lines (HeLa and U251 cells). Optimized formulations showed remarkably higher transfection activity than BPEI (25 kDa) and were also significantly better than a commercial transfection reagent, Lipofectamine 2000 as evidenced from both the luciferase activity and GFP expression analysis. Oxidation of ferrocene in the lipopolymers led to drastically reduced levels of gene transfection which was substantiated by reduced cellular internalization of fluorescently labelled pDNA as detected using confocal microscopy and flow cytometry. Moreover, the transfection inactive oxidized lipopolyplexes could be turned transfection active by exposure to ascorbic acid (AA) in cell culture medium during transfection. Endocytosis inhibition experiments showed that gene expression mediated by reduced formulations involved both clathrin and caveolae mediated pathways while the oxidized formulations were routed via the caveolae. Cytotoxicity assays revealed no obvious toxicity for the lipopolyplexes in the range of optimized transfection levels in both the cell lines studied. Overall, we have exploited the redox activity of ferrocene in branched PEI-based efficient polymeric gene carriers whose differential transfection activities could be harnessed for spatial or temporal cellular transfections.
Bayesian parameter identification in dynamic state space models using modified measurement equations
Resumo:
When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. The present study proposes strategies based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples cover laboratory studies on a time variant dynamical system and a bending-torsion coupled, geometrically non-linear building frame under earthquake support motions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Compressive Sensing (CS) theory combines the signal sampling and compression for sparse signals resulting in reduction in sampling rate. In recent years, many recovery algorithms have been proposed to reconstruct the signal efficiently. Subspace Pursuit and Compressive Sampling Matching Pursuit are some of the popular greedy methods. Also, Fusion of Algorithms for Compressed Sensing is a recently proposed method where several CS reconstruction algorithms participate and the final estimate of the underlying sparse signal is determined by fusing the estimates obtained from the participating algorithms. All these methods involve solving a least squares problem which may be ill-conditioned, especially in the low dimension measurement regime. In this paper, we propose a step prior to least squares to ensure the well-conditioning of the least squares problem. Using Monte Carlo simulations, we show that in low dimension measurement scenario, this modification improves the reconstruction capability of the algorithm in clean as well as noisy measurement cases.
Resumo:
We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!
Resumo:
Silver nanoparticles (AgNPs) find use in different biomedical applications including wound healing and cancer. We propose that the efficacy of the nanoparticles can be further augmented by using these particles for gene delivery applications. The objective of this work was to engineer biofunctionalized stable AgNPs with good DNA binding ability for efficient transfection and minimal toxicity. Herein, we report on the one-pot facile green synthesis of polyethylene glycol (PEG) stabilized chitosan-g-polyacrylamide modified AgNPs. The size of the PEG stabilized AgNPs was 38 +/- 4 nm with a tighter size distribution compared to the unstabilized nanoparticles which showed bimodal distribution of particle sizes of 68 +/- 5 nm and 7 +/- 4 nm. To enhance the efficiency of gene transfection, the Arg-Gly-Asp-Ser (RGDS) peptide was immobilized on the silver nanoparticles. The transfection efficiency of AgNPs increased significantly after immobilization of the RGDS peptide reaching up to 42 +/- 4% and 30 +/- 3% in HeLa and A549 cells, respectively, and significantly higher than 34 +/- 3% and 23 +/- 2%, respectively, with the use of polyethyleneimine (25 kDa). These nanoparticles were found to induce minimal cellular toxicity. Differences in cellular uptake mechanisms with RGDS immobilization resulting in improved efficiency are elucidated. This study presents biofunctionalized AgNPs for potential use as efficient nonviral carriers for gene delivery with minimal cytotoxicity toward augmenting the therapeutic efficacy of AgNPs used in different biomedical products.
Resumo:
Strontium modified barium zirconium titanate with general formula Ba1-xSrxZr0.05Ti0.95O3 ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr0.05Ti0.95O3 shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV-visible spectroscopy and found that the optical band gap increases with Sr concentration. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.
Resumo:
Thin films of conducting palladium selenide phases (Pd17Se15 and Pd7Se4) are prepared using a single source molecular precursor by thermolysis. Varying the mole ratios of palladium and selenium precursors results in palladium organo-selenolate complexes which on thermolysis at different temperatures yield Pd17Se15 and Pd7Se4 phases that are very stable and adherent to the substrate. The organo-selenolate complexes are characterized using small angle XRD, Se-77 NMR and thermogravimetric analysis (TGA). The palladium selenide films are characterized by various techniques such as XRD, XPS, TEM and SEM. Electrical conductivities of the films are determined using the four probe method. The strong adherence of the films to glass substrates coupled with high corrosion resistant behavior towards strong acid and alkaline environments render them to be very effective as electrocatalysts. The catalytic activity towards the I-3(-)/I- redox couple, which is an important reaction in the regeneration of the dye in a dye-sensitized solar cell, is studied. Between the two phases, the Pd17Se15 film shows superior activity as the counter electrode for dye sensitized solar cells with a photocurrent conversion efficiency of 7.45%.
Resumo:
Classical models are not successful in describing discharge characteristics of a lead-acid battery when the current density is varied over a wide range. A model is developed in this work to overcome this lacuna by introducing into the standard models two mechanisms that have not been used earlier. Lead sulfate particles nucleate and grow on active materials of electrodes during discharge, resulting in coverage of active area. Increasing rate of discharge builds supersaturation of lead sulfate rapidly, and causes increased extents of nucleation and coverage. Electrodes behave almost like an insulator due to deposition of lead sulfate when active materials are converted to a critical extent, and this can stop discharge process. Influence of this mechanism is also rate dependent. The new model developed is tested against data on polarization behavior, and capacity drawn as a function of current. The model successfully predicts both polarization curves and Peukert behavior. The model is used to predict charge that can be drawn at a current after partial discharge at a different current. Model suggests that altering nucleation behavior can be useful in enhancing capacity available for discharge. (C) 2015 The Electrochemical Society.
Resumo:
Beneficial effects of carbon grafting into the iron active material for rechargeable alkaline-iron-electrodes with and without Bi2S3 additive is probed by in situ X-ray diffraction in conjunction with Extended X-ray Absorption Fine Structure (EXAFS) and electrochemistry. EXAFS data unravel that the composition of pristine active material (PAM) for iron electrodes comprises 87% of magnetite and 13% of alpha-iron while carbon-grafted active material comprises 60% of magnetite and 40% of alpha-iron. In situ XRD patterns are recorded using a specially designed electrochemical cell. XRD data reflect that magnetite present in PAM iron electrode, without bismuth sulfide additive, is not reduced during charging while PAM iron electrode with bismuth sulfide additive is partially reduced to alpha-Fe/Fe(OH)(2). Interestingly, carbon-grafted-iron electrodes with bismuth sulfide exhibit complete conversion of active material to alpha-Fe/Fe(OH)2. The ameliorating effect of carbon grafting is substantiated by kinetic parameters obtained from steady-state potentiostatic polarization and Tafel plots. The mechanism for iron-electrode charge - discharge reactions are discussed in the light of the potential - pH diagrams for Fe - H2O, S - H2O and FeSads - H2O systems and it is surmised that carbon grafting into iron active material promotes its electrochemical utilization. (C) The Author(s) 2015. Published by ECS. All rights reserved.