314 resultados para SAW gas sensors
Resumo:
The SUSY Les Houches Accord (SLHA) 2 extended the first SLHA to include various generalisations of the Minimal Supersymmetric Standard Model (MSSM) as well as its simplest next-to-minimal version. Here, we propose further extensions to it, to include the most general and well-established see-saw descriptions (types I/II/III, inverse, and linear) in both an effective and a simple gauged extension of the MSSM framework. In addition, we generalise the PDG numbering scheme to reflect the properties of the particles. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Nanostructured Pd-modified Ni/CeO2 catalyst was synthesized in a single step by solution combustion method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. The catalytic performance of this compound was investigated by performing the water gas shift (WGS) and catalytic hydrogen combustion (CHC) reaction. The present compound is highly active and selective (100%) toward H-2 production for the WGS reaction. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic substitution of Pd and Ni species in CeO2. The creation of oxide vacancies due to ionic substitution of aliovalent ions induces dissociation of H2O that is responsible for the improved catalytic activity for WGS reaction. The combined H-2-TPR and XPS results show a synergism exists among Pd, Ni and ceria support. The redox reaction mechanism was used to correlate experimental data for the WGS reaction and a mechanism involving the interaction of adsorbed H-2 and O-2 through the hydroxyl species was proposed for CHC reaction. The parity plot shows a good correspondence between the experimental and predicted reaction rates. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The objective of this work is to confirm the possibility of utilization of PolyVinyliDeneFlouride (PVDF) films in MEMS based microactuator for microjet applications. A membrane type microactuator is designed, developed, packaged and tested. The microactuator consists of PVDF film attached to thin Silicon diaphragm. As the voltage difference is applied across it, due to the piezoelectric behaviour, it deforms primarily in d31 mode, which in turn deflects the diaphragm. Using finite element methods, coupled field analysis is carried out to optimize the dimensions of the actuator with respect to the output force and input voltage. A cavity with a square diaphragm of 1mm×1mm×5μm is realized using standard microfabrication technique. 50μm thick PVDF film, cut with special dicing saw, is glued inside the metalized cavity using low stress, conductive, room temperature cured epoxy. The 3mm×3mm×0.675mm actuator die is packaged using Chip-On-Board technique in conjunction with low temperature soldering for taking the connections. The micro-actuator is tested in both actuation and sensing mode. The developed actuator is proposed to use with micro nozzle to study the utilization in drug delivery system.
Resumo:
Three pi-electron rich fluorescent supramolecular polymers (1-3) have been synthesized incorporating 2-methyl-3-butyn-2-ol groups in reasonable yield by employing Sonagashira coupling. They were characterized by multinuclear NMR (H-1, C-13), ESI-MS and single crystal X-ray diffraction analyses 1 = 1( 2-methyl-3-butyn-2-ol) pyrene; 2 = 9,10-bis(2-methyl-3-butyn-2-ol) anthracene; 3 = 1,3,6,8-tetrakis(2methyl- 3-butyn-2-ol) pyrene]. Single crystal structures of 1-3 indicated that the incorporation of hydroxy (-OH) groups on the peripheral of the fluorophores helps them to self-associate into an infinite supramolecular polymeric network via intermolecular hydrogen bonding interactions between the adjacent discrete fluorophore units. All these compounds showed fluorescence characteristics in chloroform solution due to the extended pi-conjugation and were used as selective fluorescent sensors for the detection of electron deficient nitroaromatics. The changes in photophysical properties of fluorophores (1-3) upon complex formation with electron deficient nitroaromatic explosives were studied in chloroform solution by using fluorescence spectroscopy. All these fluorophores showed the largest quenching response with moderate selectivity for nitroaromatics over various other electron deficient/ rich aromatic compounds tested (Chart 1). Analysis of the fluorescence titration profile of 9,10-bis(2-methyl-3butyn- 2-ol) anthracene fluorophore (2) with 1,3,5-trinitrotoluene/ 2,4-dinitrotoluene provided evidence that this particular fluorophore detects nitroaromatics in the nanomolar range 2.0 ppb for TNT, 13.7 ppb for DNT]. Moreover, sharp visual color change was observed upon mixing nitroaromatic (DNT) with fluorophores (1-3) both in solution as well as in solid phase. Furthermore, the vapor-phase sensing study of thin film of fluorophores (1-3) showed efficient quenching responses for DNT and this sensing process is reproducible. Selective fluorescence quenching response including a sharp visual color change for nitroaromatics make these tested fluorophores (1-3) as potential sensors for nitroaromatic compounds with a detection limit of ppb level.
Resumo:
The paper addresses experiments and modeling studies on the use of producer gas, a bio-derived low energy content fuel in a spark-ignited engine. Producer gas, generated in situ, has thermo-physical properties different from those of fossil fuel(s). Experiments on naturally aspirated and turbo-charged engine operation and subsequent analysis of the cylinder pressure traces reveal significant differences in the heat release pattern within the cylinder compared with a typical fossil fuel. The heat release patterns for gasoline and producer gas compare well in the initial 50% but beyond this, producer gas combustion tends to be sluggish leading to an overall increase in the combustion duration. This is rather unexpected considering that producer gas with nearly 20% hydrogen has higher flame speeds than gasoline. The influence of hydrogen on the initial flame kernel development period and the combustion duration and hence on the overall heat release pattern is addressed. The significant deviations in the heat release profiles between conventional fuels and producer gas necessitates the estimation of producer gas-specific Wiebe coefficients. The experimental heat release profiles are used for estimating the Wiebe coefficients. Experimental evidence of lower fuel conversion efficiency based on the chemical and thermal analysis of the engine exhaust gas is used to arrive at the Wiebe coefficients. The efficiency factor a is found to be 2.4 while the shape factor m is estimated at 0.7 for 2% to 90% burn duration. The standard Wiebe coefficients for conventional fuels and fuel-specific coefficients for producer gas are used in a zero D model to predict the performance of a 6-cylinder gas engine under naturally aspirated and turbo-charged conditions. While simulation results with standard Wiebe coefficients result in excessive deviations from the experimental results, excellent match is observed when producer gas-specific coefficients are used. Predictions using the same coefficients on a 3-cylinder gas engine having different geometry and compression ratio(s) indicate close match with the experimental traces highlighting the versatility of the coefficients.
Resumo:
In this paper we discuss a novel procedure for constructing clusters of bound particles in the case of a quantum integrable derivative delta-function Bose gas in one dimension. It is shown that clusters of bound particles can be constructed for this Bose gas for some special values of the coupling constant, by taking the quasi-momenta associated with the corresponding Bethe state to be equidistant points on a single circle in the complex momentum plane. We also establish a connection between these special values of the coupling constant and some fractions belonging to the Farey sequences in number theory. This connection leads to a classification of the clusters of bound particles associated with the derivative delta-function Bose gas and allows us to study various properties of these clusters like their size and their stability under the variation of the coupling constant. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Shoe-mounted inertial sensors offer a convenient way to track pedestrians in situations where other localization systems fail. This tutorial outlines a simple yet effective approach for implementing a reasonably accurate tracker. This Web extra presents the Matlab implementation and a few sample recordings for implementing the pedestrian inertial tracking system using an error-state Kalman filter for zero-velocity updates (ZUPTs) and orientation estimation.
Resumo:
In this paper, we investigate the initiation and subsequent evolution of Crow instability in an inhomogeneous unitary Fermi gas using zero-temperature Galilei-invariant nonlinear Schrodinger equation. Considering a cigar-shaped unitary Fermi gas, we generate the vortex-antivortex pair either by phase-imprinting or by moving a Gaussian obstacle potential. We observe that the Crow instability in a unitary Fermi gas leads to the decay of the vortex-antivortex pair into multiple vortex rings and ultimately into sound waves.
Resumo:
Nanosized Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe) has been synthesized using a low temperature sonication method and characterized using XRD, TEM, XPS and H-2-TPR. The potential application of both the solid solutions has been explored as exhaust catalysts by performing CO oxidation. The addition of Si- and Fe-in Ce0.95Ru0.05O2-delta greatly enhanced the reducibility of Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe), as indicated by the H-2-TPR study. The oxygen storage capacity has been used to correlate surface oxygen reactivity to the CO oxidation activity. Both the compounds reversibly release lattice oxygen and exhibit excellent CO oxidation activity with 99% conversion below 200 degrees C. A bifunctional reaction mechanism involving CO oxidation by the extraction of lattice oxygen and rejuvenation of oxide vacancy with gas feed O-2 has been used to correlate experimental data. The performance of both the solid solutions has also been investigated for energy application by performing the water gas shift reaction. The present catalysts are highly active and selective towards the hydrogen production and a lack of methanation activity is an important finding of present study.
Resumo:
While Fiber Bragg Grating (FBG) sensors have been extensively used for temperature and strain sensing, clad etched FBGs (EFBGs) have only recently been explored for refractive index sensing. Prior literature in EFBG based refractive index sensing predominantly deals with bulk refractometry only, where the Bragg wavelength shift of the sensor as a function of the bulk refractive index of the sample can be analytically modeled, unlike the situation for adsorption of molecular thin films on the sensor surface. We used a finite element model to calculate the Bragg wavelength change as a function of thickness and refractive index of the adsorbing molecular layer and compared the model with the real-time, in-situ measurement of electrostatic layer-by-layer (LbL) assembly of weak polyelectrolytes on the silica surface of EFBGs. We then used this model to calculate the layer thickness of LbL films and found them to be in agreement with literature. Further, we used this model to arrive at a realistic estimate of the limit of detection of EFBG sensors based on nominal measurement noise levels in current FBG interrogation systems and found that sufficiently thinned EFBGs can provide a competitive platform for real-time measurement of molecular interactions while simultaneously leveraging the high multiplexing capabilities of fiber optics.
Resumo:
Polyaniline/titaniurn dioxide nanocomposites were prepared using alpha-dextrose as surfactant and ammonium persulphate as an oxidant. The PANI/TiO2 nanocomposite is characterized by FTIR, XRD and TEM. The FTIR spectra revel that the presence of characteristic peaks of benzenoid, qunoide rings and metal-oxygen stretching. The XRD studies show the monoclinic structure of the nanocomposites. The TEM study shows that the size of TiO2 is in the order of 9 nm where as the composite size is of the order of 13 nm and further it was observed that the TiO2 particles are intercalated to form a core shell of PANI. The maximum sensing response for LPG is found to be 90% for 30 wt.% of PANI/TiO2 nanocomposites at 400 ppm whereas for Benzene and Toluene it is negligibly small (<= 20%) and for the cyclohexane sensing response it is around 30% for different wt.%.
Resumo:
This paper addresses the problem of finding outage-optimal power control policies for wireless energy harvesting sensor (EHS) nodes with automatic repeat request (ARQ)-based packet transmissions. The power control policy of the EHS specifies the transmission power for each packet transmission attempt, based on all the information available at the EHS. In particular, the acknowledgement (ACK) or negative acknowledgement (NACK) messages received provide the EHS with partial information about the channel state. We solve the problem of finding an optimal power control policy by casting it as a partially observable Markov decision process (POMDP). We study the structure of the optimal power policy in two ways. First, for the special case of binary power levels at the EHS, we show that the optimal policy for the underlying Markov decision process (MDP) when the channel state is observable is a threshold policy in the battery state. Second, we benchmark the performance of the EHS by rigorously analyzing the outage probability of a general fixed-power transmission scheme, where the EHS uses a predetermined power level at each slot within the frame. Monte Carlo simulation results illustrate the performance of the POMDP approach and verify the accuracy of the analysis. They also show that the POMDP solutions can significantly outperform conventional ad hoc approaches.
Resumo:
Entropy is a fundamental thermodynamic property that has attracted a wide attention across domains, including chemistry. Inference of entropy of chemical compounds using various approaches has been a widely studied topic. However, many aspects of entropy in chemical compounds remain unexplained. In the present work, we propose two new information-theoretical molecular descriptors for the prediction of gas phase thermal entropy of organic compounds. The descriptors reflect the bulk and size of the compounds as well as the gross topological symmetry in their structures, all of which are believed to determine entropy. A high correlation () between the entropy values and our information-theoretical indices have been found and the predicted entropy values, obtained from the corresponding statistically significant regression model, have been found to be within acceptable approximation. We provide additional mathematical result in the form of a theorem and proof that might further help in assessing changes in gas phase thermal entropy values with the changes in molecular structures. The proposed information-theoretical molecular descriptors, regression model and the mathematical result are expected to augment predictions of gas phase thermal entropy for a large number of chemical compounds.
Resumo:
Electromagnetic field interactions with the composites made up of polyaniline (PANI) and single wall carbon nanotube (SWCNT) are simulated using the discrete dipole approximation. Recent observations on polymer nano-composites explain the interface interactions between the PANI host and the carbon nanostructures. These types of composite have potential applications in organic solar cell, gas sensor, bio-sensor and electro-chromic devices. Various nanostructures of PANI is possible in the form of nanowires, nanodisks, nanofibers and nanotubes have been reported. In the present study, we considered two types of composite, one is the PANI wrapped CNT and the other is CNT immersed in PANI nanotube. We use Modified Thole's parameters for calculating frequency dependent atomic polarizability of composites. Absorption spectra of the composites are studied by illuminating a wide range of electromagnetic energy spectrum. From the absorption spectra, we observe plasmon excitation in near-infrared region similar to that in SWCNTs reported recently. The interactions between the PANI and CNT in the composite, resulting electromagnetic absorptions are simulated.
Resumo:
In this paper we report the quantitative oxygen quenching effect on laser-induced fluorescence of acetone, methyl ethyl ketone, and 3-pentanone at low pressures (approximate to 700torr) with oxygen partial pressures up to 450torr. Nitrogen was used as a bath gas in which these molecular tracers were added in different quantities according to their vapor pressure at room temperature. These tracers were excited by using a frequency-quadrupled, Q-switched, Nd:YAG laser (266nm). Stern-Volmer plots were found to be linear for all the tracers, suggesting that quenching is collisional in nature. Stern-Volmer coefficients (k(sv)) and quenching rate constants (k(q)) were calculated from Stern-Volmer plots. The effects of oxygen on the laser-induced fluorescence of acetone, methyl ethyl ketone, and 3-pentanone were compared with each other. Further, the Smoluchowski theory was used to calculate the quenching parameters and compared with the experimental results.