323 resultados para Residue lignocellulosic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single chain fragment variables (ScFvs) have been extensively employed in studying the protein-protein interactions. ScFvs derived from phage display libraries have an additional advantage of being generated against a native antigen, circumventing loss of information on conformational epitopes. In the present study, an attempt has been made to elucidate human chorionic gonadotropin (hCG)-luteinizing hormone (LH) receptor interactions by using a neutral and two inhibitory ScFvs against hCG. The objective was to dock a computationally derived model of these ScFvs onto the crystal structure of hCG and understand the differential roles of the mapped epitopes in hCG-LH receptor interactions. An anti-hCG ScFv, whose epitope was mapped previously using biochemical tools, served as the positive control for assessing the quality of docking analysis. To evaluate the role of specific side chains at the hCG-ScFv interface, binding free energy as well as residue interaction energies of complexes in solution were calculated using molecular mechanics Poisson-Boltzmann/surface area method after performing the molecular dynamic simulations on the selected hCG-ScFv models and validated using biochemical and SPR analysis. The robustness of these calculations was demonstrated by comparing the theoretically determined binding energies with the experimentally obtained kinetic parameters for hCG-ScFv complexes. Superimposition of hCG-ScFv model onto a model of hCG complexed with the 51-266 residues of LH receptor revealed importance of the residues previously thought to be unimportant for hormone binding and response. This analysis provides an alternate tool for understanding the structure-function analysis of ligand-receptor interactions. Proteins 2011;79:3108-3122. (C) 2011 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The covalent linkage between the side-chain and the backbone nitrogen atom of proline leads to the formation of the five-membered pyrrolidine ring and hence restriction of the backbone torsional angle phi to values of -60 degrees +/- 30 degrees for the L-proline. Diproline segments constitute a chain fragment with considerably reduced conformational choices. In the current study, the conformational states for the diproline segment ((L)Pro-(L)Pro) found in proteins has been investigated with an emphasis on the cis and trans states for the Pro-Pro peptide bond. The occurrence of diproline segments in turns and other secondary structures has been studied and compared to that of Xaa-Pro-Yaa segments in proteins which gives us a better understanding on the restriction imposed on other residues by the diproline segment and the single proline residue. The study indicates that P(II)-P(II) and P(II)-alpha are the most favorable conformational states for the diproline segment. The analysis on Xaa-Pro-Yaa sequences reveals that the XaaPro peptide bond exists preferably as the trans conformer rather than the cis conformer. The present study may lead to a better understanding of the behavior of proline occurring in diproline segments which can facilitate various designed diproline-based synthetic templates for biological and structural studies. (C) 2011 Wiley Periodicals, Inc. Biopolymers 97: 54-64, 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coordinated activity of protein tyrosine phosphatases (PTPs) is crucial for the initiation, modulation, and termination of diverse cellular processes. The catalytic activity of this protein depends on a nucleophilic cysteine at the active site that mediates the hydrolysis of the incoming phosphotyrosine substrate. While the role of conserved residues in the catalytic mechanism of PTPs has been extensively examined, the diversity in the mechanisms of substrate recognition and modulation of catalytic activity suggests that other, less conserved sequence and structural features could contribute to this process. Here we describe the crystal structures of Drosophila melanogaster PTP10D in the apo form as well as in a complex with a substrate peptide and an inhibitor. These studies reveal the role of aromatic ring stacking interactions at the boundary of the active site of PTPs in mediating substrate recruitment. We note that phenylalanine 76, of the so-called KNRY loop, is crucial for orienting the phosphotyrosine residue toward the nucleophilic cysteine. Mutation of phenylalanine 76 to leucine results in a 60-fold decrease in the catalytic efficiency of the enzyme. Fluorescence measurements with a competitive inhibitor, p-nitrocatechol sulfate, suggest that Phe76 also influences the formation of the enzyme-substrate intermediate. The structural and biochemical data for PTP10D thus highlight the role of relatively less conserved residues in PTP domains in both substrate recruitment and modulation of reaction kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been experimentally established that nickel and cobalt can be extracted from their ferrites with sodium sulphate melt containing femc ions. The kinetics of extraction from synthetic ferrites using a melt of sodium and ferric sulphates of eutectic composition has been studied as a function of the particle size of the ferrite and temperature in the range 900 to 1073 K. The divalent ions in the ferrite exchange with the ferric ion in the melt, leaving a residue of hematite.The rate of reaction conforms to the Crank-Ginstling-Brounshtein diffusion model. The reaction rate is governed by the counter-diffusion of ~ e an~d ~+i ' +(or co2+) ions in the hematite lattice. Analytical expressions for the rate constants have been derived from the experimental data as a function of particle size and temperature. The activation energy for the extraction of nickel from nickel ferrite is 154(+10) kJ mol-' and the corresponding value for cobalt is 142(+10)kJ mol;'. In sulphation roasting of minerals containing nickel, the yield of nickel is generally limited to 75% due to the formation of insoluble ferrites. The use of melts based on sodium sulphate provides a possible route for enhancing the recovery of nickel to approximately 98%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antithyroid drugs inhibit the thyroid hormone synthesis by inactivating the thyroid peroxidase and/or iodothyronine deiodinase, which are involved in iodination and deiodination reactions. Gold(I) compounds also inhibit the thyroid hormone synthesis by interacting with the selenocysteine residue of iodothyronine deiodinase. However, the chemical reactions between these two different classes of compounds have not been studied. In this paper, we describe the interaction of therapeutic gold(I) compounds with the commonly used thiourea-based antithyroid drug, methimazole. It is observed that the gold(I) phosphine complexes (R(3)PAuCl, where R = Me, Et, Ph) react with methimazole only upon deprotonation to produce the corresponding gold(I)-thiolate complexes. Addition of PPh(3) to the gold(I)-thiolates produces (R(3)PAuPPh(3))(+) (R = Me or Et), indicating the possibility of ligand exchange reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida albicans, a human fungal pathogen, undergoes morphogenetic changes that are associated with virulence. We report here that GAL102 in C. albicans encodes a homolog of dTDP-glucose 4,6-dehydratase, an enzyme that affects cell wall properties as well as virulence of many pathogenic bacteria. We found that GAL102 deletion leads to greater sensitivity to antifungal drugs and cell wall destabilizing agents like Calcofluor white and Congo red. The mutant also formed biofilms consisting mainly of hyphal cells that show less turgor. The NMR analysis of cell wall mannans of gal102 deletion strain revealed that a major constituent of mannan is missing and the phosphomannan component known to affect virulence is greatly reduced. We also observed that there was a substantial reduction in the expression of genes involved in biofilm formation but increase in the expression of genes encoding glycosylphosphatidylinositol-anchored proteins in the mutant. These, along with altered mannosylation of cell wall proteins together might be responsible for multiple phenotypes displayed by the mutant. Finally, the mutant was unable to grow in the presence of resident peritoneal macrophages and elicited a weak pro-inflammatory cytokine response in vitro. Similarly, this mutant elicited a poor serum pro-inflammatory cytokine response as judged by IFN gamma and TNF alpha levels and showed reduced virulence in a mouse model of systemic candidiasis. Importantly, an Ala substitution for a conserved Lys residue in the active site motif YXXXK, that abrogates the enzyme activity also showed reduced virulence and increased filamentation similar to the gal102 deletion strain. Since inactivating the enzyme encoded by GAL102 makes the cells sensitive to antifungal drugs and reduces its virulence, it can serve as a potential drug target in combination therapies for C. albicans and related pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of non-planarity of the peptide unit on helical structures stabilized by intrachain hydrogen bonds is discussed. While the present calculations generally agree with those already reported in the literature for right-handed helical structures, it is found that the most stable left-handed structure is a novel helix, called the delta-helix. Its helical parameters are close to these reported for poly-beta-benzyl-L -aspartate. Conformational energy calculations show that poly-beta-benzyl-L -aspartate with the delta-helical structure is considerably more stable than the structure it is generally believed to take up (the omega-helix) by about 15 kcal/mol-residue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of NIa-Pro is crucial for polyprotein processing and hence, for successful infection of potyviruses. We have examined two novel mechanisms that could regulate NIa-Pro activity. Firstly, the influence of VPg domain on the proteolytic activity of NIa-Pro was investigated. It was shown that the turnover number of the protease increases when these two domains interact (as: two-fold; trans: seven-fold) with each other. Secondly, the protease activity of NIa-Pro could also be modulated by phosphorylation at Ser129. A mutation of this residue either to aspartate (phosphorylation-mimic) or alanine (phosphorylation-deficient) drastically reduces the protease activity. Based on these observations and molecular modeling studies, we propose that interaction with VPg as well as phosphorylation of Ser129 could relay a signal through Trp143 present at the protein surface to the active site pocket by subtle conformational changes, thus modulating protease activity of NIa-Pro. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT), a pyridoxal-5V-phosphate (PLP)-dependent enzyme catalyzes thetetrahydrofolate (H4-folate)- dependent retro-aldol cleavage of serine to form 5,10-methylene H4-folate and glycine. The structure–function relationship of SHMT wasstudied in our laboratory initially by mutation of residues that are conserved in all SHMTs and later by structure-based mutagenesis of residues located in the active site. The analysis of mutants showed that K71, Y72, R80, D89, W110, S202, C203, H304, H306 and H356 residues are involved in maintenance of the oligomeric structure. The mutation of D227, a residue involved in charge relay system, led to the formation of inactive dimers, indicating that this residue has a role in maintaining the tetrameric structure and catalysis. E74, a residue appropriately positioned in the structure of the enzyme to carry out proton abstraction, was shown by characterization of E74Q and E74K mutants to be involved in conversion of the enzyme from an ‘open’ to ‘closed’ conformation rather than proton abstraction from the hydroxylgroup of serine. K256, the residue involved in the formation of Schiffs base with PLP, also plays a crucial role in the maintenance of the tetrameric structure. Mutation of R262 residue established the importance of distal interactions in facilitating catalysis and Y82 is not involved in the formaldehyde transfer via the postulated hemiacetal intermediate but plays a role in stabilizing the quinonoid intermediate.The mutational analysis of scSHMT along with the structure of recombinant Bacillus stearothermophilus SHMT and its substrate(s)complexes was used to provide evidence for a direct transfer mechanism rather than retro-aldol cleavage for the reaction catalyzed by SHMT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of similar to 1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (Rank Score), which correlated with the residue depth, and identify active-site residues. Using these correlations, similar to 98% of correct models of CcdB (RMSD <= 4 angstrom) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obestatin is a more recently discovered hormone that is encoded by the ghrelin gene and produced in the stomach and gut. We report NMR analysis on synthetic Obestatin (OB23), a 23 residue peptide, along with three overlapping fragments of the same in methanol solvent as a first step towards structure activity relationship. Selective substitutions on the promising N-terminal and middle fragments of obestatin have been carried out in order to improve the efficacy and potency. In the N-terminal fragment two peptides were obtained by the replacement of Gly (8) with a-aminoisobutyric acid (Aib, U) and Phe (F5) with Cyclohexylalanine (Cha). In case of the middle fragment both Gly (3) and Gly (8) were replaced with Aib residues. The rationale being, these unusual amino acids could provide protection from immediate degradation and aid structure stabilization. Our previous studies showed that the N-terminal and the middle fragment were unstructured and hence this substitution would directly evaluate the effect of structure on the activity of these fragment analogs. Detailed NMR analysis clearly demonstrates formation of helical secondary structure in all the peptide analogues and provides justification for relative activities reported by our group previously (Nagaraj et al. 2009).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bacterium Bacillus polymyxa was found to be capable of selective removal of calcium and iron from bauxite. The bioleached residue was found to be enriched in its alumina content with insignificant amounts of iron and calcium as impurities. The developed bio- process was found to be capable of producing a bauxite product which meets the specifica- tions as a raw material for the manufacture of alumina based ceramics and refractories. The role of bacterial cells and metabolic products in the selective dissolution of calcium (present as calcite) and iron (present as hematite and goethite) from bauxite was assessed and possi- ble mechanisms illustrated. The effect of different parameters such as sucrose concentra- tion, pH, pulp density and time on selective biodissolution was studied. It was observed that periodic decantation and replenishment of the leach medium was beneficial in improving the dissolution kinetics. Calcium removal involves chelation with bacterial exopolysaccha- tides and acidolysis by organic acid generation. Hematite could be solubilized through a reductive dissolution mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pre-mRNA splicing occurs in spliceosomes whose assembly and activation are critical for splice site selection and catalysis. The highly conserved NineTeen complex protein complex stabilizes various snRNA and protein interactions early in the spliceosome assembly pathway. Among several NineTeen complex-associated proteins is the nonessential protein Bud31/Ycr063w, which is also a component of the Cef1p subcomplex. A role for Bud31 in pre-mRNA splicing is implicated by virtue of its association with splicing factors, but its specific functions and spliceosome interactions are uncharacterized. Here, using in vitro splicing assays with extracts from a strain lacking Bud31, we illustrate its role in efficient progression to the first catalytic step and its requirement for the second catalytic step in reactions at higher temperatures. Immunoprecipitation of functional epitope-tagged Bud31 from in vitro reactions showed that its earliest association is with precatalytic B complex and that the interaction continues in catalytically active complexes with stably bound U2, U5, and U6 small nuclear ribonucleoproteins. In complementary experiments, wherein precatalytic spliceosomes are selected from splicing reactions, we detect the occurrence of Bud31. Cross-linking of proteins to pre-mRNAs with a site-specific 4-thio uridine residue at the -3 position of exon 1 was tested in reactions with WT and bud31 null extracts. The data suggest an altered interaction between a similar to 25-kDa protein and this exonic residue of pre-mRNAs in the arrested bud31 null spliceosomes. These results demonstrate the early spliceosomal association of Bud31 and provide plausible functions for this factor in stabilizing protein interactions with the pre-mRNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the N-15 and H-1 chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on C-13(beta) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal H-1 relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of incorporation of a centrally positioned Ac(6)c-Xxx segment where Xxx = (L)Val/(D)Val into a host oligopeptide composed of L-amino acid residues has been investigated. Studies of four designed octapeptides Boc-Leu-Phe-Val-Ac(6)c-Xxx-Leu-Phe-Val-OMe (Xxx = (D)Val 1, (L)Val 2) Boc-Leu-Val-Val-Ac(6)c-Xxx-Leu-Val-Val-OMe (Xxx = (D)Val 3, (L)Val 4) are reported. Diagnostic nuclear Overhouse effects characteristic of hairpin conformations are observed for Xxx = (D)Val peptides (1 and 3) while continuous helical conformation characterized by sequential NiH <-> Ni+1H NOEs are favored for Xxx = (L)Val peptides (2 and 4) in methanol solutions. Temperature co-efficient of NH chemical shifts are in agreement with distinctly different conformational preferences upon changing the configuration of the residue at position 5. Crystal structures of peptides 2 and 4 (Xxx = (L)Val) establish helical conformations in the solid state, in agreement with the structures deduced from NMR data. The results support the design principle that centrally positioned type I beta-turns may be used to nucleate helices in short peptides, while type I' beta-turns can facilitate folding into beta-hairpins.