340 resultados para Raman generation
Resumo:
There is a lot of pressure on all the developed and second world countries to produce low emission power and distributed generation (DG) is found to be one of the most viable ways to achieve this. DG generally makes use of renewable energy sources like wind, micro turbines, photovoltaic, etc., which produce power with minimum green house gas emissions. While installing a DG it is important to define its size and optimal location enabling minimum network expansion and line losses. In this paper, a methodology to locate the optimal site for a DG installation, with the objective to minimize the net transmission losses, is presented. The methodology is based on the concept of relative electrical distance (RED) between the DG and the load points. This approach will help to identify the new DG location(s), without the necessity to conduct repeated power flows. To validate this methodology case studies are carried out on a 20 node, 66kV system, a part of Karnataka Transco and results are presented.
Resumo:
Anomalous temperature dependence of Raman phonon wavenumbers attributed to phononphonon anharmonic interactions has been studied in two different families of pyrochlore titanates. We bring out the role of the ionic size of titanium and the inherent vacancies of pyrochlore in these anomalies by studying the effect of replacement of Ti4?+ by Zr4?+ in Sm2Ti2O7 and by stuffing Ho3?+ in place of Ti4?+ in Ho2Ti2O7 with appropriate oxygen stoichiometry. Our results show that an increase in the concentration of the larger ion, i.e. Zr4?+ or Ho3?+, reduces the phonon anomalies, thus implying a decrease in the phononphonon anharmonic interactions. In addition, we find signatures of coupling between a phonon and crystal field transition in Sm2Ti2O7, manifested as an unusual increase in the phonon intensity with increasing temperature. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
We determine the nature of coupled phonons and magnetic excitations in AlFeO3 using inelastic light scattering from 5 to 315 K covering a spectral range from 100 to 2200 cm(-1) and complementary first-principles density functional theory-based calculations. A strong spin-phonon coupling and magnetic ordering-induced phonon renormalization are evident in (1) anomalous temperature dependence of many modes with frequencies below 850 cm(-1), particularly near the magnetic transition temperature T-c approximate to 250 K, and (2) distinct changes in band positions of high-frequency Raman bands between 1100 and 1800 cm(-1); in particular, a broad mode near 1250 cm(-1) appears only below T-c, attributed to the two-magnon Raman scattering. We also observe weak anomalies in the mode frequencies similar to 100 K due to a magnetically driven ferroelectric phase transition. Understanding of these experimental observations has been possible on the basis of first-principles calculations of the phonons' spectrum and their coupling with spins.
Resumo:
We have investigated the Raman spectra of different regioisomeric forms of monoacyl and diacyl chlorogenic acids. Raman spectra of 3-caffeoylquinic acid, 4-caffeoylquinic acid, 5-caffeoylquinic, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, and a synthetic derivative of 3-feruloylqunic acid were recorded using visible Raman spectroscopic technique and vibrational bands are assigned. Additionally, a theoretical study of 5-caffeoylquinic acid was performed using Gaussian 03. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
An all-digital technique is proposed for generating an accurate delay irrespective of the inaccuracies of a controllable delay line. A subsampling technique-based delay measurement unit (DMU) capable of measuring delays accurately for the full period range is used as the feedback element to build accurate fractional period delays based on input digital control bits. The proposed delay generation system periodically measures and corrects the error and maintains it at the minimum value without requiring any special calibration phase. Up to 40x improvement in accuracy is demonstrated for a commercial programmable delay generator chip. The time-precision trade-off feature of the DMU is utilized to reduce the locking time. Loop dynamics are adjusted to stabilize the delay after the minimum error is achieved, thus avoiding additional jitter. Measurement results from a high-end oscilloscope also validate the effectiveness of the proposed system in improving accuracy.
Resumo:
Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2 nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2 x 10(5)) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface.
Resumo:
We demonstrate 30 times enhanced flux of relativistic electrons by a silicon nanowire coated target excited by 30 fs, 800 nm laser pulses at an intensity of 3 x 10(18) W cm(-2). A measurement of the megaampere electron current via induced megagauss magnetic field supports the enhancement feature observed in the electron energy spectrum. The relativistic electrons generated at the front of nanowire coated surface are shown to travel efficiently over 500 mu m in the insulating substrate. The enhanced hot electron temperature is explained using a simple model and is supported by recent simulations. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729010]
Resumo:
In the context of the standard model with a fourth generation, we explore the allowed mass spectra in the fourth-generation quark and lepton sectors as functions of the Higgs mass. Using the constraints from unitarity and oblique parameters, we show that a heavy Higgs allows large mass splittings in these sectors, opening up new decay channels involving W emission. Assuming that the hints for a light Higgs do not yet constitute an evidence, we work in a scenario where a heavy Higgs is viable. A Higgs heavier than similar to 800 GeV would in fact necessitate either a heavy quark decay channel t' -> b'W/b' -> t'W or a heavy lepton decay channel tau' -> nu'W as long as the mixing between the third and fourth generations is small. This mixing tends to suppress the mass splittings and hence the W-emission channels. The possibility of the W-emission channel could substantially change the search strategies of fourth-generation fermions at the LHC and impact the currently reported mass limits.
Resumo:
Nanocrystalline Nd2O3:Cu2+ (2 mol %) phosphors have been prepared by a low temperature solution combustion technique. Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 (900 degrees C, 3 h) and the lattice parameters have been evaluated by Rietveld refinement. Surface morphology of as-formed and Cu2+ doped Nd2O3 phosphors show that the particles are irregular in shape and porous in nature. TEM results also confirm the nature and size of the particles. The EPR spectrum exhibits two resonance signals with effective g values at g(parallel to) approximate to 2.12 and g(perpendicular to) approximate to 2.04. The g values indicate that the site symmetry of Cu2+ ions is octahedral symmetry with elongated tetragonal distortion. Raman studies show major peaks, which are assigned, to F-g and combination of A(g) + E-g modes. It is observed that the Raman peaks and intensity have been reduced in Cu2+ doped samples. UV-Visible absorption spectra exhibit a strong and broad absorption band at similar to 240 nm. Further, the absorption peak shifts to similar to 14 nm in Cu2+ doped samples. The optical band gap is estimated to be 5.28 eV for Cu doped Nd2O3 nanoparticles which are higher than the bulk Nd2O3 (4.7 eV). This can be attributed to the quantum confinement effect of the nanoparticles. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Solvents are known to affect the triplet state structure and reactivity. In this paper, we have employed time-resolved resonance Raman (TR3) spectroscopy to understand solvent-induced subtle structural changes in the lowest excited triplet state of thioxanthone. Density functional theory (DFT) combined with the self-consistent reaction field (SCRF) implicit solvation model has been used to calculate the vibrational frequencies in the solvents. Here, we report a unique observation of the coexistence of two triplets, which has been substantiated by the probe wavelength-dependent Raman experiments. The coexistence of two triplets has been further supported by photoreduction experiments carried out at various temperatures.
Resumo:
We revisit the assignment of Raman phonons of rare-earth titanates by performing Raman measurements on single crystals of O18 isotope-rich spin ice Dy2Ti2O718 and nonmagnetic Lu2Ti2O718 pyrochlores and compare the results with their O16 counterparts. We show that the low-wavenumber Raman modes below 250 cm-1 are not due to oxygen vibrations. A mode near 200 cm-1, commonly assigned as F2g phonon, which shows highly anomalous temperature dependence, is now assigned to a disorder-induced Raman active mode involving Ti4+ vibrations. Moreover, we address here the origin of the new Raman mode, observed below TC similar to 110 K in Dy2Ti2O7, through a simultaneous pressure-dependent and temperature-dependent Raman study. Our study confirms the new mode to be a phonon mode. We find that dTC/dP = + 5.9 K/GPa. Temperature dependence of other phonons has also been studied at various pressures up to similar to 8 GPa. We find that pressure suppresses the anomalous temperature dependence. The role of the inherent vacant sites present in the pyrochlore structure in the anomalous temperature dependence is also discussed. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
CoSb3 skutterudites are established thermoelectric materials in the 500-800K temperature range. Undoped and Bi filled CoSb3 samples were synthesized by induction melting-annealing process and phase confirmation done by X-Ray diffraction. The role of bismuth as a filler in CoSb3 was investigated by Raman and far infrared reflectance study. It was found that bismuth strengthens Sb vibrations, and can potentially scatter Sb related acoustic phonons effectively. As a result substantial reduction in thermal conductivity may be possible with proper control of Bi filling.
Resumo:
Conducting polymer microstructures for enzymatic biosensors are developed by a facile electrochemical route. Horseradish peroxide (HRP)-entrapped polypyrrole (PPy) films with bowl-shaped microstructures are developed on stainless steel (SS 304) substrates by a single-step process. Potentiodynamic scanning/cyclic voltammetry is used for generation of PPy microstructures using electrogenerated oxygen bubbles stabilized by zwitterionic surfactant/buffer N-2-hydroxyethylpiperazine N-2-ethanesulfonic acid as soft templates. Scanning electron microscopic images reveal the bowl-shaped structures surrounded by cauliflower-like fractal PPy films and globular nanostructures. Raman spectroscopy reveals the oxidized nature of the film. Sensing properties of PPy-HRP films for hydrogen peroxide (H2O2) are demonstrated. Electrochemical characterization of the sensor films is done by linear sweep voltammetry (LSV) and amperometry. LSV results indicated the reduction of H2O2 and linearity in response of the sensing film. The amperometric biosensor has a performance comparable to those in the literature with advantages of hard-template free synthesis procedure and a satisfactory sensitivity value of 12.8 mu A/(cm(2) . mM) in the range of 1-10 mM H2O2.
Resumo:
Titanium carbide (TiC) is an electrically conducting material with favorable electrochemical properties. In the present studies, carbon-doped TiO2 (C-TiO2) has been synthesized from TiC particles, as well as TiC films coated on stainless steel substrate via thermal annealing under various conditions. Several C-TiO2 substrates are synthesized by varying experimental, conditions and characterized by UV-visible spectroscopy, photoluminescence, X-ray diffraction and X-ray photoelectron spectroscopic techniques. C-TiO2 in the dry state (in powder form as well as in film form) is subsequently used as a substrate for enhancing Raman signals corresponding to 4-mercaptobenzoic acid and 4-nitrothiophenol by utilizing chemical enhancement based on charge-transfer interactions. Carbon, a nonmetal dopant in TiO2, improves the intensities of Raman signals, compared, to undoped TiO2. Significant dependence of Raman intensity on carbon doping is observed. Ameliorated performance obtained using C-TiO2 is attributed to the presence of surface defects that originate due to carbon as a dopant, which, in turn,, triggers charge transfer between TiO2 and analyte. The C-TiO2 substrates are subsequently regenerated for repetitive use by illuminating an analyte-adsorbed substrate with visible light for a period of 5 h.