232 resultados para Nonnegative sine polynomial


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the equation Delta(2)u = g(x, u) >= 0 in the sense of distribution in Omega' = Omega\textbackslash {0} where u and -Delta u >= 0. Then it is known that u solves Delta(2)u = g(x, u) + alpha delta(0) - beta Delta delta(0), for some nonnegative constants alpha and beta. In this paper, we study the existence of singular solutions to Delta(2)u = a(x) f (u) + alpha delta(0) - beta Delta delta(0) in a domain Omega subset of R-4, a is a nonnegative measurable function in some Lebesgue space. If Delta(2)u = a(x) f (u) in Omega', then we find the growth of the nonlinearity f that determines alpha and beta to be 0. In case when alpha = beta = 0, we will establish regularity results when f (t) <= Ce-gamma t, for some C, gamma > 0. This paper extends the work of Soranzo (1997) where the author finds the barrier function in higher dimensions (N >= 5) with a specific weight function a(x) = |x|(sigma). Later, we discuss its analogous generalization for the polyharmonic operator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluate the contribution of chiral fermions in d = 2, 4, 6, chiral bosons, a chiral gravitino like theory in d = 2 and chiral gravitinos in d = 6 to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in d = 2 and chiral gravitinos in d = 6, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop diagrams involved in the Kubo formulae. Finally we show that charge diffusion mode of an ideal 2 dimensional Weyl gas in the presence of a finite chemical potential acquires a speed, which is equal to half the speed of light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show here a 2(Omega(root d.log N)) size lower bound for homogeneous depth four arithmetic formulas. That is, we give an explicit family of polynomials of degree d on N variables (with N = d(3) in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this family of the form f = Sigma(i) Pi(j) Q(ij), where the Q(ij)'s are homogeneous polynomials (recall that a polynomial is said to be homogeneous if all its monomials have the same degree), it must hold that Sigma(i,j) (Number of monomials of Q(ij)) >= 2(Omega(root d.log N)). The above mentioned family, which we refer to as the Nisan-Wigderson design-based family of polynomials, is in the complexity class VNP. Our work builds on the recent lower bound results 1], 2], 3], 4], 5] and yields an improved quantitative bound as compared to the quasi-polynomial lower bound of 6] and the N-Omega(log log (N)) lower bound in the independent work of 7].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the POSSIBLE WINNER problem in computational social choice theory, we are given a set of partial preferences and the question is whether a distinguished candidate could be made winner by extending the partial preferences to linear preferences. Previous work has provided, for many common voting rules, fixed parameter tractable algorithms for the POSSIBLE WINNER problem, with number of candidates as the parameter. However, the corresponding kernelization question is still open and in fact, has been mentioned as a key research challenge 10]. In this paper, we settle this open question for many common voting rules. We show that the POSSIBLE WINNER problem for maximin, Copeland, Bucklin, ranked pairs, and a class of scoring rules that includes the Borda voting rule does not admit a polynomial kernel with the number of candidates as the parameter. We show however that the COALITIONAL MANIPULATION problem which is an important special case of the POSSIBLE WINNER problem does admit a polynomial kernel for maximin, Copeland, ranked pairs, and a class of scoring rules that includes the Borda voting rule, when the number of manipulators is polynomial in the number of candidates. A significant conclusion of our work is that the POSSIBLE WINNER problem is harder than the COALITIONAL MANIPULATION problem since the COALITIONAL MANIPULATION problem admits a polynomial kernel whereas the POSSIBLE WINNER problem does not admit a polynomial kernel. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 140 million years ago, the Indian plate separated from Gondwana and migrated by almost 90 degrees latitude to its current location, forming the Himalayan-Tibetan system. Large discrepancies exist in the rate of migration of Indian plate during Phanerozoic. Here we describe a new approach to paleo-latitudinal reconstruction based on simultaneous determination of carbonate formation temperature and delta O-18 of soil carbonates, constrained by the abundances of C-13-O-18 bonds in palaeosol carbonates. Assuming that the palaeosol carbonates have a strong relationship with the composition of the meteoric water, delta O-18 carbonate of palaeosol can constrain paleo-latitudinal position. Weighted mean annual rainfall delta O-18 water values measured at several stations across the southern latitudes are used to derive a polynomial equation: delta(18)Ow = -0.006 x (LAT)(2) - 0.294 x (LAT) - 5.29 which is used for latitudinal reconstruction. We use this approach to show the northward migration of the Indian plate from 46.8 +/- 5.8 degrees S during the Permian (269 M. y.) to 30 +/- 11 degrees S during the Triassic (248 M. y.), 14.7 +/- 8.7 degrees S during the early Cretaceous (135 M. y.), and 28 +/- 8.8 degrees S during the late Cretaceous ( 68 M. y.). Soil carbonate delta O-18 provides an alternative method for tracing the latitudinal position of Indian plate in the past and the estimates are consistent with the paleo-magnetic records which document the position of Indian plate prior to 135 +/- 3 M. y.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low-order harmonic pulsating torque is a major concern in high-power drives, high-speed drives, and motor drives operating in an overmodulation region. This paper attempts to minimize the low-order harmonic torques in induction motor drives, operated at a low pulse number (i.e., a low ratio of switching frequency to fundamental frequency), through a frequency domain (FD) approach as well as a synchronous reference frame (SRF) based approach. This paper first investigates FD-based approximate elimination of harmonic torque as suggested by classical works. This is then extended into a procedure for minimization of low-order pulsating torque components in the FD, which is independent of machine parameters and mechanical load. Furthermore, an SRF-based optimal pulse width modulation (PWM) method is proposed to minimize the low-order harmonic torques, considering the motor parameters and load torque. The two optimal methods are evaluated and compared with sine-triangle (ST) PWM and selective harmonic elimination (SHE) PWM through simulations and experimental studies on a 3.7-kW induction motor drive. The SRF-based optimal PWM results in marginally better performance than the FD-based one. However, the selection of optimal switching angle for any modulation index (M) takes much longer in case of SRF than in case of the FD-based approach. The FD-based optimal solutions can be used as good starting solutions and/or to reasonably restrict the search space for optimal solutions in the SRF-based approach. Both of the FD-based and SRF-based optimal PWM methods reduce the low-order pulsating torque significantly, compared to ST PWM and SHE PWM, as shown by the simulation and experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we seek to find nonrotating beams that are isospectral to a given tapered rotating beam. Isospectral structures have identical natural frequencies. We assume the mass and stiffness distributions of the tapered rotating beam to be polynomial functions of span. Such polynomial variations of mass and stiffness are typical of helicopter and wind turbine blades. We use the Barcilon-Gottlieb transformation to convert the fourth-order governing equations of the rotating and the nonrotating beams, from the (x, Y) frame of reference to a hypothetical (z, U) frame of reference. If the coefficients of both the equations in the (z, U) frame match with each other, then the nonrotating beam is isospectral to the given rotating beam. The conditions on matching the coefficients lead to a pair of coupled differential equations. Wesolve these coupled differential equations numerically using the fourth-order Runge-Kutta scheme. We also verify that the frequencies (given in the literature) of standard tapered rotating beams are the frequencies (obtained using the finite-element analysis) of the isospectral nonrotating beams. Finally, we present an example of beams having a rectangular cross-section to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these isospectral nonrotating beams to calculate the frequencies of the rotating beam.