267 resultados para Nb-doped


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the morphology-controlled synthesis of aluminium (Al) doped zinc oxide (ZnO) nanosheets on Al alloy (AA-6061) substrate by a low-temperature solution growth method without using any external seed layer and doping process. Doped ZnO nanosheets were obtained at low temperatures of 60-90 degrees C for the growth time of 4 hours. In addition to the synthesis, the effect of growth temperature on the morphological changes of ZnO nanosheets is also reported. As-synthesized nanosheets are characterized by FE-SEM, XRD TEM and XPS for their morphology, crystallinity, microstructure and compositional analysis respectively. The doping of Al in ZnO nanosheets is confirmed with EDXS and XPS. Furthermore, the effect of growth temperature on the morphological changes was studied in the range of 50 to 95 degrees C. It was found that the thickness and height of the nanosheets varied with respect to the growth temperature. The study has given an important insight into the structural morphology with respect to the growth temperature, which in turn enabled us to determine the growth temperature window for the ZnO nanosheets. These Al doped ZnO nanosheets have potential application possibilities in gas sensors, solar cells and energy harvesting devices like nanogenerators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic ZrO2: Fe3+ (0.5-4 mol%) nanoparticles (NPs) were synthesized via bin-inspired, inexpensive and simple route using Phyllanthus acidus as fuel. PXRD, SEM, TEM, FTIR, UV absorption and PL studies were performed to ascertain the formation of NPs. Rietveld analysis confirmed the formation of cubic structure. The influence of Fe3+ on the structure, morphology, UV absorption, PL emission and photocatalytic activity of NPs were investigated. The CIE chromaticity coordinates (0.36, 0.41) show that NPs could be a promising candidate for white LEDs. The influence of Fe3+ on ZrO2 matrix for photocatalytic degradation of AO7 was evaluated under UVA and Sunlight irradiation. The enhanced photocatalytic activity of spherical shaped ZrO2: Fe3+ (2 mol%) under UVA light was attributed to dopant concentration, crystallite size, narrow band gap, textural properties and capability for reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers were followed the order SO42- > Cl- > C2H5OH > HCO3- > CO32-. The recycling catalytic ability of the ZrO2: Fe3+ (2 mol%) was also evaluated with a negligible decrease in the degradation efficiency even after the sixth successive run. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ag doped BaTiO3-CuO mixed oxide thin films are evaluated for their carbon-dioxide sensing characteristics. The metal oxide films of different thicknesses are deposited on oxidized p type Si < 100 > substrate by RF Sputtering. Sensing characteristics for different CO2 concentration, (300 ppm - 1000 ppm) are obtained for different operating temperatures, (100 degrees C - 400 degrees C). Optimum temperature for maximum sensitivity is found to be 250 degrees C. The effect of annealing on sensing properties is also evaluated. The unannealed films give better sensitivity than that of annealed films. Response time and recovery time are also calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the electrical transport properties of silver-, potassium-, and magnesium-doped hydroxyapatites (HAs). While Ag+ or K+ doping to HA enhances the conductivity, Mg+2 doping lowers the conductivity when compared with undoped HA. The mechanism behind the observed differences in ionic conductivity has been discussed using the analysis of high-temperature frequency-dependent conductivity data, Cole-Cole plots of impedance data as well as on the basis of the frequency dependence of the imaginary part (M) of the complex electric modulus. The f(max) of modulus M decreased in silver- and potassium-doped samples in comparison with the undoped HA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dy3+ doped Y3-xDyxFe5O12 (x=0-3) nanopowders were prepared using microwave hydrothermal route. The structural and morphological studies were analyzed using transmission electron microscope, X-ray diffractometer and field emission scanning electron microscope. The nanopowders were sintered at 900 degrees C/90 min using microwave furnace. Dense ceramics with theoretical density of around 95% was obtained. Ferro magnetic resonance (FMR) spectrum and microwave absorption spectrum of Dy3+ doped YIG were studied, the signal exhibits a resonance character for all Dy3+ variations. It was observed that the location of the FMR signal peak at the field axes monotonically shifts to higher field with increasing Dy3+ content. The dielectric and magnetic properties (epsilon', epsilon `', mu' and mu `') of Dy3+ doped YIG were studied over a wide range of frequency (1-50 GHz). With increase of Dy3+ both epsilon' and mu' decreased. The low values of dielectric, magnetic properties and broad distribution of FMR line width of these ceramics are opening the real opportunity to use them for microwave devices above K- band frequency. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR relaxation rates (1/T-1), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T-1 is classified into three regimes: (a) For T < (g mu(B) B/2k(B)), the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. H-1-T-1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g mu(B) B/2k(B)) < T < T-BPP (the temperature where the contribution from the reorientation motion to the T-1 is insignificant) the relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T-1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the PF6 reorientation. The cross relaxation among the H-1 and F-19 nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra-and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T-1(-1) on temperature shows that at low temperature T < (g mu(B) B/2k(B))] the system shows three dimensions and changes to quasi one dimension at high temperature. Moreover, a good correlation between electrical conductivity, magnetic susceptibility, and NMR T-1 data has been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance of supercapacitors based on 1:1 (by weight) composites of polyaniline (PANI) with nanosheets of nitrogenated reduced graphene oxide (NRGO), BC1.5N, MoS2 and WS2 has been investigated in detail. The highest specific capacitance is found with the 1:1 NRGO-PANI composite, the value being 561 F/g at a current density of 0.2 A/g. All the 1:1 nanocomposites show good cyclability. Increasing the PANI content increases the specific capacitance and the highest value found being 715 F/g at a current density of 0.5 A/g in the case of the 1:6 NRGO-PANI composite. However, all the 1:6 composites show a marked decrease in specific capacitance with increase in current density. The energy density of 1:6 NRGO-PANI is similar to 25 Wh/Kg at 0.5 A/g and 1:1 NRGO-PANI is similar to 19 Wh/Kg at 0.2 A/g. NRGO-PANI composites clearly stand out as viable materials for practical applications. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt-supported La1-xSrxCoO3 and Pt-doped La1-xSrxCoO3 are synthesized using chemical reduction and solution combustion method, respectively. Chemical reduction is carried out using formaldehyde as a reducing agent giving Pt-supported La1-xSrxCoO3. Solution combustion method is used to prepare Pt-doped La1-xSrxCoO3. Detailed characterization using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, and transmission electron microscopy (TEM) is carried out to distinguish the Pt-supported and Pt-doped compounds in terms of their morphology and Pt oxidations states. TEM results indeed show the differences in their morphology. Further, electrochemical measurements are performed in neutral medium to differentiate their electrochemical activity. Cyclic voltammetry (CV) shows noticeable differences between Pt-supported La1-xSrxCoO3 and Pt-doped La1-xSrxCoO3. Importantly, our results show that Pt4+ in doped compound has poor to zero electrocatalytic activity toward formic acid and methanol electro-oxidation in comparison to Pt-0 in supported compound. This study shows that metallic Pt in zero oxidation state is a superior catalyst to Pt in +4 oxidation state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report the synthesis of boron and nitrogen Co-doped carbon nanoparticles (BN-CNPs) by a hydrothermal method using sucrose, boric acid, and urea as the precursors. The BN-CNPs show excellent photoluminescence with a quantum yield of similar to 14.2% in aqueous solution and can be used as photoluminescent probes for selective and sensitive detection of picric acid (PA). PA quenches the photoluminescence signal remarkably, while other explosives cause a little quenching confirming the high selectivity of BN-CNPs. The sensitivity toward PA sensing is high at pH 7 and increases with temperature. The detection limit as well as the sensitivity are shown to improve by adding NaCl to the PA. The low detection limit can be as low as 10 nM at room temperature and pH 7, which indicates the BN-CNPs are superior as compared to other luminescent probes reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we maximize the thermoelectric (TE) figure of merit, ZT, of n-type skutterudites, (In,Sr,Ba,Yb)(y)Co4Sb12, via three different routes: (i) find the optimum fraction of In as fourth filler (ii) check the influence of powder particle, grain, and crystallite size on the TE properties and (iii) check thermal stability. Filled n-type (Sr, Ba, Yb)(y)Co4Sb12 was mixed in three different proportions with In0.4Co4Sb12, ball milled (regular or high-energy (HB) ball milling) and hot-pressed. Particle size analyses and SEM pictures of the broken surfaces of the hot pressed samples document that only HB produces uniform particles/grains with average crystallite sizes similar to 100 nm, proven by transmission electron microscopy. X-ray Rietveld refinements combined with EDX indicate that in all cases indium entered the icosahedral voids of the skutterudite. Temperature dependent physical properties of all three regularly ball-milled samples show that increasing In-content infers an increasing electrical resistivity, increasing Seebeck coefficient but a decreasing total thermal conductivity. Although ZT (823 K) is in the same range as for the sample without In, the ZT values in the whole temperature range are higher and consequently the TE-conversion efficiency, eta is at least 10% higher. Annealing the samples at 600 degrees C for three days shows minor changes in structure and thermoelectric properties, indicating TE stability. The HB sample, due to uniformly small particles, equally sized grains and crystallites, exhibits a high power factor (4.4 mW/m K-2 at 730 K) and a very low thermal conductivity leading to an outstanding high ZT = 1.8 at 823 K (eta(max) = 17.5%). (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-insulator-metal (MIM) capacitors for DRAM applications have been realised using stacked TiO2-ZrO2 (TiO2/ZrO2 and ZrO2/TiO2) and Si-doped ZrO2 (TiO2/Si-doped ZrO2) dielectrics. High capacitance densities (> 42 fF/mu m(2)), low leakage current densities (< 5 x 10(-7) A/cm(2) at -1 V), and sub-nm EOT (< 0.8 nm) have been achieved. The effects of constant voltage stress on the device characteristics is studied. The structural analysis of the samples is performed by X-ray diffraction measurements, and this is correlated to the electrical characteristics of the devices. The surface chemical states of the films are analyzed through X-ray photoelectron spectroscopy measurements. The doped-dielectric stack (TiO2/Si-doped ZrO2) helps to reduce leakage current density and improve reliability, with a marginal reduction in capacitance density; compared to their undoped counterparts (TiO2/ZrO2 and ZrO2/TiO2). We compare the device performance of the fabricated capacitors with other stacked high-k MIM capacitors reported in recent literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Ln(3+) (Eu and Tb)-doped crystalline nanobundles of YPO4 were prepared by a facile microwave-assisted route with water as a solvent and without using any surfactant. TEM investigations reveal that the as-prepared powder consists of lenticular-shaped nanobundles (similar to 100 nm in diameter) made of very small nanorods with diameter less than 10 nm and length varying from 20 to 50 nm. Each nanorod in turn is single crystalline, as revealed by HRTEM imaging. The as-prepared nanobundles are easily dispersible in various solvents, especially water, without any surface functionalization, which is critical for various bio-probe applications like cell and tissue imaging. The Eu- and Tb-doped YPO4 nanobundles show good photoluminescence properties and were further evaluated for their use as fluorescent biolabels. Our results show that HeLa cells labelled with Eu- and Tb-doped YPO4 nanobundles show bright red (Eu) and green (Tb) intracellular luminescence under a confocal microscope. Concentration-and time-dependent MTT cell viability assays show that the nanobundles show low toxicity towards cells which makes them promising in bioimaging field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carrier density dependent current-voltage (J V) characteristics of electrochemically prepared poly(3-methylthiophene) (P3MeT) have been investigated in Pt/P3MeT/Al devices, as a function of temperature from 280 to 84 K. In these devices, the charge transport is found to be mainly governed by different transport regimes of space charge limited conduction (SCLC). In a lightly doped device, SCLC controlled by exponentially distributed traps (Vl+1 law, l > 1) is observed in the intermediate voltage range (0.5-2 V) at all temperatures. However, at higher bias (> 2 V), the current deviates from the usual Vl+1 law where the slope is found to be less than 2 of the logJ-logV plot, which is attributed to the presence of the injection barrier. These deviations gradually disappear at higher doping level due to reduction in the injection barrier. Numerical simulations of the Vl+1 law by introducing the injection barrier show good agreement with experimental data. The results show that carrier density can tune the charge transport mechanism in Pt/P3MeT/Al devices to understand the non-Ohmic behavior. The plausible reasons for the origin of injection barrier and the transitions in the transport mechanism with carrier density are discussed. (C) 2015 AIP Publishing LLC.