692 resultados para Magnetic Nanosized Spinel Oxides
Resumo:
From symmetry considerations and using generalized Onsager relations, it is shown that 66 of the 90 magnetic classes, consisting of 29 single colour and 37 double colour ones, can exhibit what may be called the strain gyrotropic rotation. Similarly, 69 of the 90 magnetic classes, consisting of 21 single colour and 48 double colour ones, can exhibit what may be called the strain gyrotropic birefringence. A crystal in the class m3 or m3 m is interesting as it can exhibit strain gyrotropic rotation despite its being cubic and incapable of exhibiting gyrotropic rotation in the unstressed state. Similarly, a crystal in the class m3 m, is interesting as it can exhibit strain gyrotropic birefringence despite its being cubic and incapable of exhibiting gyrotropic birefringence in the unstressed state.
Resumo:
The nuclear magnetic resonance spectra of longifolene, zerumbone, humulene, and their hydroderivatives have been studied in order to gauge the potentialities of this new tool in the field of sesquiterpenes. On the basis of present study, it has been possible to unequivocally fix the positions of the ethylene linkages in humulene and thus provide a straightforward solution of this hitherto unsolved problem.
Resumo:
The magnetic susceptibilities of certain vanadium pentoxide systems supported by kieselgur have been determined in the temperature interval 30° to 400° C. The plot of reciprocal susceptibility against temperature for all the systems studied indicates sudden deflections at temperatures which are about 150° lower than those of optimum catalytic activity. It has been suggested that these points may mark the temperatures of commencement of structural changes which may be responsible for the activity of these catalysts.
Resumo:
The standard molar Gibbs free energy of formation of Co2TiO4, CoTiO3,and CoTi2O5 as a function of temperature over an extended range (900 to 1675) K was measured using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte, with CoO as reference electrode and appropriate working electrodes. For the formation of the three compounds from their component oxides CoO with rock-salt and TiO2 with rutile structure, the Gibbs free energy changes are given by:Delta(f)G degrees((ox))(Co2TiO4) +/- 104/(J . mol(-1)) = -18865 - 4.108 (T/K)Delta(f)G degrees((ox))(CoTiO3) +/- 56/(J . mol(-1)) = -19627 + 2.542 (T/K) Delta(f)G degrees((ox))(CoTi2O5) +/- 52/(J . mol(-1)) = -6223 - 6.933 (T/K) Accurate values for enthalpy and entropy of formation were derived. The compounds Co2TiO4 with spinel structure and CoTi2O5 with pseudo-brookite structure were found to be entropy stabilized. The relatively high entropy of these compounds arises from the mixing of cations on specific crystallographic sites. The stoichiometry of CoTiO3 was confirmed by inert gas fusion analysis for oxygen. Because of partial oxidation of cobalt in air, the composition corresponding to the compound Co2TiO4 falls inside a two-phase field containing the spinet solid solution Co2TiO4-Co3O4 and CoTiO3. The spinel solid solution becomes progressively enriched in Co3O4 with decreasing temperature. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We present a comprehensive study of the thickness dependent structural, magnetic and magnetotransport properties of oriented La0.5Sr0.5CoO3 thin films grown on LaAlO3 by Pulsed Laser Deposition. We observe that these films undergo a reduction in Curie temperature (T-c) with a decrease in film thickness, and it is found to be primarily caused by the finite size effect since the finite scaling law [T-c(infinity) T-c(t)/T-c(infinity) = (c/t)lambda holds good over the studied thickness range. We rule out the contribution from the strain induced suppression of Curie temperature with decreasing film thickness since all the films exhibit a constant out of plane tensile strain (0.5%) irrespective of their varying thickness. However, we observe that the coercivity of the films is an order of magnitude higher than that of the bulk due to the tensile strain. In addition, we also observe an increase in the magneto resistance peak and a decrease in coercivity and electrical resistivity with an increase in film thickness. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We describe an investigation of the structure and dielectric properties of MM'O-4 and MTiM'O-6 rutile-type oxides for M = Cr, Fe, Ga and M' = Nb. Ta and Sb. All the oxides adopt a disordered rutile structure (P4(2)/mnm) at ambient temperature. A partial ordered trirutile-type structure is confirmed for FeTaO4 from the low temperature (17 K) neutron diffraction studies While both the MM'O-4 oxides (CrTaO4 and FeTaO4) investigated show a normal dielectric property MTiM'O-6 oxides for M = Fe, Cr and M' = Nb/Ta/Sb display a distinct relaxor/relaxor-like response. Significantly the corresponding gallium analogs, GaTiNbO6 and GaTiTaO6, do not show a relaxor response at T<500K (C) 2010 Elsevier Inc All rights reserved
Resumo:
The laminar boundary layer over a stationary infinite disk induced by a rotating compressible fluid is considered. The free stream velocity has been taken as tangential and varies as a power of radius, i.e. v∞ ˜ r−n. The effect of the axial magnetic field and suction is also included in the analysis. An implicit finite difference scheme is employed to the governing similarity equations for numerical computations. Solutions are studied for various values of disk to fluid temperature ratio and for values of n between 1 and −1. In the absence of the magnetic field and suction, velocity profiles exhibit oscillations. It has been observed that for a hot disk in the presence of a magnetic field the boundary layer solutions decay algebraically instead of decaying exponentially. In the absence of the magnetic field and suction, the solution of the similarity equations exists only for a certain range of n.
Resumo:
Core-level spectroscopic studies suggest that cuprates nominally supposed to contain Cu3+ions are likely to have the excess positive charge on oxygen instead, giving rise to O-type species (oxygen holes)
Resumo:
In this paper we demonstrate experimentally a magnetic field sensor using a fiber Bragg grating. The shift in the Bragg condition as a result of strain applied on the fiber mounted on a nickel base by the magnetic field gives an indirect measure of the field. The proposed method overcomes the need for long fiber lengths required in methods such as Faraday effect sensors.