270 resultados para Iminic ligands
Resumo:
Syntheses of manganese(I)-based molecular squares have been accomplished in facile one-pot reaction conditions at room temperature. Self-assembly of eight components has resulted in the formation of M4L4-type metallacyclophanes [Mn(CO)(3)Br(mu-L)(4) (1-3) using pentacarbonylbromomanganese as metal precursor and rigid azine ligands such as pyrazine, 4,4'-bipyridine, and trans-1,2-bis(4pyridyl)ethylene, respectively, as bridging ligands. The metallacyclophanes have been characterized on the basis of IR, NMR, and UV-vis spectroscopic techniques and single-crystal X-ray diffraction methods.
Resumo:
Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, beta-arabinofuranoside trisaccharide glycolipids constituted with beta-(1 -> 2), beta-(1 -> 3) and beta-(1 -> 2), beta-(1 -> 5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying beta-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few alpha-anomeric arabinofuranoside glycolipids showed that glycolipids with beta-anomeric linkages were having relatively lower equilibrium binding constants than those with alpha-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with alpha-anomeric linkages.
Resumo:
BACKGROUND Familial diarrhea disorders are, in most cases, severe and caused by recessive mutations. We describe the cause of a novel dominant disease in 32 members of a Norwegian family. The affected members have chronic diarrhea that is of early onset, is relatively mild, and is associated with increased susceptibility to inflammatory bowel disease, small-bowel obstruction, and esophagitis. METHODS We used linkage analysis, based on arrays with single-nucleotide polymorphisms, to identify a candidate region on chromosome 12 and then sequenced GUCY2C, encoding guanylate cyclase C (GC-C), an intestinal receptor for bacterial heat-stable enterotoxins. We performed exome sequencing of the entire candidate region from three affected family members, to exclude the possibility that mutations in genes other than GUCY2C could cause or contribute to susceptibility to the disease. We carried out functional studies of mutant GC-C using HEK293T cells. RESULTS We identified a heterozygous missense mutation (c.2519G -> T) in GUCY2C in all affected family members and observed no other rare variants in the exons of genes in the candidate region. Exposure of the mutant receptor to its ligands resulted in markedly increased production of cyclic guanosine monophosphate (cGMP). This may cause hyperactivation of the cystic fibrosis transmembrane regulator (CFTR), leading to increased chloride and water secretion from the enterocytes, and may thus explain the chronic diarrhea in the affected family members. CONCLUSIONS Increased GC-C signaling disturbs normal bowel function and appears to have a proinflammatory effect, either through increased chloride secretion or additional effects of elevated cellular cGMP. Further investigation of the relevance of genetic variants affecting the GC-C-CFTR pathway to conditions such as Crohn's disease is warranted. (Funded by Helse Vest Western Norway Regional Health Authority] and the Department of Science and Technology, Government of India.)
Resumo:
Ligand-induced stabilization of G-quadruplex structures formed by the human telomeric DNA is an active area of research. The compounds which stabilize the G-quadruplexes often lead to telomerase inhibition. Herein we present the results of interaction of new monomeric and dimeric ligands having 1,3-phenylene-bis(piperazinyl benzimidazole) unit with G-quadruplex DNA (G4DNA) formed by human telomeric repeat d(G(3)T(2)A)(3)G(3)]. These ligands efficiently stabilize the preformed G4DNA in the presence of 100 mM monovalent alkali metal ions. Also, the G4DNA formed in the presence of low concentrations of ligands in 100 mM K+ adopts a highly stable parallel-stranded conformation. The G-quadruplexes formed in the presence of the dimeric compound are more stable than that induced by the corresponding monomeric counterpart. The dimeric ligands having oligo-oxyethylene spacers provide much higher stability to the preformed G4DNA and also exert significantly higher telomerase inhibition activity. Computational aspects have also been discussed.
Resumo:
Understanding the dendrimer-drug interaction is of great importance to design and optimize the dendrimer-based drug delivery system. Using atomistic molecular dynamics (MD) simulations, we have analyzed the release pattern of four ligands (two soluble drugs, namely, salicylic acid (Sal), L-alanine (Ala), and two insoluble drugs, namely, phenylbutazone (Pbz) and primidone (Prim)), which were initially encapsulated inside the ethylenediamine (EDA) cored polyamidoamine (PAMAM) dendrimer using the docking method. We have computed the potential of mean force (PMF) variation with generation 5 (G5)-PAMAM dendrimer complexed with drug molecules using umbrella sampling. From our calculated PMF values, we observe that soluble drugs (Sal and Ala) have lower energy barriers than insoluble drugs (Pbz and Prim). The order of ease of release pattern for these drugs from G5 protonated PAMAM dendrimer was found to be Ala > Sal > Prim > Pbz. In the case of insoluble drugs (Prim and Pbz), because of larger size, we observe much nonpolar contribution, and thus, their larger energy barriers can be reasoned to van der Waals contribution. From the hydrogen bonding analysis of the four PAMAM drug complexes under study, we found intermolecular hydrogen bonding to show less significant contribution to the free energy barrier. Another interesting feature appears while calculating the PMF profile of G5NP (nonprotonated)-PAMAM Pbz and G5NP (nonprotonated)-PAMAM-Sal complex. The PMF was found to be less when the drug is bound to nonprotonated dendrimer compared to the protonated dendrimer. Our results suggest that encapsulation of the drug molecule into the host PAMAM dendrimer should be carried out at higher pH values (near pH 10). When such complex enters the human body, the pH is around 7.4 and at that physiological pH, the dendrimer holds the drug tightly. Hence the release of drug can occur at a controlled rate into the bloodstream. Thus, our findings provide a microscopic picture of the encapsulation and controlled release of drugs in the case of dendrimer-based host-guest systems.
Resumo:
Four new 2-oxo-1,2-dihydrobenzoh]quinoline-3-carbaldehyde N-substituted thiosemicarbazone ligands (H-2-LR, where R = H, Me, Et or Ph) and their corresponding new cobalt(III) complexes have been synthesized and characterized. The structures of the complexes 2 and 3 were determined by single crystal X-ray diffraction analysis. The interactions of the new complexes with DNA were investigated by absorption, emission and viscosity studies which indicated that the complexes bind to DNA via intercalation. Antioxidant studies of the new complexes showed that the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of complexes 1-4 against A549 cell line was assayed which showed higher cytotoxic activity with lower IC50 values indicating their efficiency in killing the cancer cells even at very low concentrations. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Divalent metal complexes of general formula M(2-nb)(2)(mc)(2)].2(2-nbH), where M = Co(II), Ni(II), Cu(II) or Zn(II), 2-nbH = 2-nitrobenzoic acid and mc = methyl carbazate (NH2NHCOOCH3), have been prepared and characterized by physicochemical and spectroscopic methods. Single-crystal X-ray study of the Cu(II) complex revealed that the molecule is centrosymmetric, with two N,O-chelating mc ligands in equatorial positions and a pair of monodentate 2-nb anions in the axial positions. The lattice 2-nbH molecules help to establish the packing of monomers through hydrogen-bonding interactions. Thermal stability and reactivity of the complexes were studied by TG-DTA. Emission studies show that these complexes are fluorescent.
Resumo:
A new class of macrobicyclic dinickel(II) complexes Ni2L1,2 B](ClO4)(4) (1-6), where L-1,L-2 are polyaza macrobicyclic binucleating ligands, and B is a N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)) are synthesized and characterized. The redox, catalytic, DNA binding and DNA cleavage properties were studied. They exhibit two irreversible waves in the cathodic region around E-pc = -0.95 V and E-pa = -0.85 V vs. Ag/Ag+ in CH3CN-0.1 M TBAP, respectively. The first order rate constants for the hydrolysis of 4-nitrophenylphosphate to 4-nitrophenolate by the dinickel(II) complexes 1-6 are in the range from 3.36 x 10(-5) to 10.83 x 10(-5) Ms-1. The complexes 3 and 6 show good binding propensity to calf thymus DNA giving binding constant values (K-b) in the range from 3.08 x 10(5) to 5.37 x 10(5) M-1. The binding site sizes and viscosity data suggest the DNA intercalative and/or groove binding nature of the complexes. The complexes display significant hydrolytic cleavage of supercoiled pBR322DNA at pH 7.2 and 37 degrees C. The hydrolytic cleavage of DNA by the complexes is supported by the evidence from free radical quenching and T4 ligase ligation. The pseudo Michaelis-Menten kinetic parameters k(cat) = 5.44 x 10(-2) h(-1) and K-M = 6.23 x 10(-3) M for complex 3 were obtained. Complex 3 also shows an enormous enhancement of the cleavage rate, of 1.5 x 10(6), in comparison to the uncatalysed hydrolysis rate (k = 3.6 x 10(-8) h(-1)) of ds-DNA.
Resumo:
DNA is the chemotherapeutic target for treating diseases of genetic origin. Besides well-known double-helical structures (A, B, Z, parallel stranded-DNA etc.), DNA is capable of forming several multi-stranded structures (triplex, tetraplex, i-motif etc.) which have unique biological significance. The G-rich 3'-ends of chromosomes, called telomeres, are synthesized by telomerase, a ribonucleoprotein, and over-expression of telomerase is associated with cancer. The activity of telomerase is suppressed if the G-rich region is folded into the four stranded structures, called G-quadruplexes (G4-DNAs) using small synthetic ligands. Thus design and synthesis of new G4-DNA ligands is an attractive strategy to combat cancer. G4-DNA forming sequences are also prevalent in other genomic regions of biological significance including promoter regions of several oncogenes. Effective gene regulation may be achieved by inducing a G4-DNA structure within the G-rich promoter sequences. To date, several G4-DNA stabilizing ligands are known. DNA groove binders interact with the duplex B-DNA through the grooves (major and minor groove) in a sequence-specific manner. Some of the groove binders are known to stabilize the G4-DNA. However, this is a relatively under explored field of research. In this review, we focus on the recent advances in the understanding of the G4-DNA structures, particularly made from the human telomeric DNA stretches. We summarize the results of various investigations of the interaction of various organic ligands with the G4-DNA while highlighting the importance of groove binder-G4-DNA interactions.
Resumo:
Realization of thermally and chemically durable, ordered gold nanostructures using bottom-up self-assembly techniques are essential for applications in a wide range of areas including catalysis, energy generation, and sensing. Herein, we describe a modular process for realizing uniform arrays of gold nanoparticles, with interparticle spacings of 2 nm and above, by using RF plasma etching to remove ligands from self-assembled arrays of ligand-coated gold nanoparticles. Both nanoscale imaging and macroscale spectroscopic characterization techniques were used to determine the optimal conditions for plasma etching, namely RF power, operating pressure, duration of treatment, and type of gas. We then studied the effect of nanoparticle size, interparticle spacing, and type of substrate on the thermal durability of plasma-treated and untreated nanoparticle arrays. Plasma-treated arrays showed enhanced chemical and thermal durability, on account of the removal of ligands. To illustrate the application potential of the developed process, robust SERS (surface-enhanced Raman scattering) substrates were formed using plasma-treated arrays of silver-coated gold nanoparticles that had a silicon wafer or photopaper as the underlying support. The measured value of the average SERS enhancement factor (2 x 10(5)) was quantitatively reproducible on both silicon and paper substrates. The silicon substrates gave quantitatively reproducible results even after thermal annealing. The paper-based SERS substrate was also used to swab and detect probe molecules deposited on a solid surface.
Resumo:
Most homodimeric proteins have symmetric structure. Although symmetry is known to confer structural and functional advantage, asymmetric organization is also observed. Using a non-redundant dataset of 223 high-resolution crystal structures of biologically relevant homodimers, we address questions on the prevalence and significance of asymmetry. We used two measures to quantify global and interface asymmetry, and assess the correlation of several molecular and structural parameters with asymmetry. We have identified rare cases (11/223) of biologically relevant homodimers with pronounced global asymmetry. Asymmetry serves as a means to bring about 2:1 binding between the homodimer and another molecule; it also enables cellular signalling arising from asymmetric macromolecular ligands such as DNA. Analysis of these cases reveals two possible mechanisms by which possible infinite array formation is prevented. In case of homodimers associating via non-topologically equivalent surfaces in their tertiary structures, ligand-dependent mechanisms are used. For stable dimers binding via large surfaces, ligand-dependent structural change regulates polymerisation/depolymerisation; for unstable dimers binding via smaller surfaces that are not evolutionarily well conserved, dimerisation occurs only in the presence of the ligand. In case of homodimers associating via interaction surfaces with parts of the surfaces topologically equivalent in the tertiary structures, steric hindrance serves as the preventive mechanism of infinite array. We also find that homodimers exhibiting grossly symmetric organization rarely exhibit either perfect local symmetry or high local asymmetry. Binding of small ligands at the interface does not cause any significant variation in interface asymmetry. However, identification of biologically relevant interface asymmetry in grossly symmetric homodimers is confounded by the presence of similar small magnitude changes caused due to artefacts of crystallisation. Our study provides new insights regarding accommodation of asymmetry in homodimers.
Resumo:
Salmonella typhimurium DCyD (StDCyD) is a fold type II pyridoxal 5' phosphate (PLP)-dependent enzyme that catalyzes the degradation of D-Cys to H2S and pyruvate. It also efficiently degrades beta-chloro-D-alanine (beta CDA). D-Ser is a poor substrate while the enzyme is inactive with respect to L-Ser and 1-amino-1-carboxy cyclopropane (ACC). Here, we report the X-ray crystal structures of StDCyD and of crystals obtained in the presence of D-Cys, beta CDA, ACC, D-Ser, L-Ser, D-cycloserine (DCS) and L-cycloserine (LCS) at resolutions ranging from 1.7 to 2.6 angstrom. The polypeptide fold of StDCyD consisting of a small domain (residues 48-161) and a large domain (residues 1-47 and 162-328) resembles other fold type II PLP dependent enzymes. The structures obtained in the presence of D-Cys and beta CDA show the product, pyruvate, bound at a site 4.0-6.0 angstrom away from the active site. ACC forms an external aldimine complex while D- and L-Ser bind non-covalently suggesting that the reaction with these ligands is arrested at C alpha proton abstraction and transimination steps, respectively. In the active site of StDCyD cocrystallized with DCS or LCS, electron density for a pyridoxamine phosphate (PMP) was observed. Crystals soaked in cocktail containing these ligands show density for PLP-cycloserine. Spectroscopic observations also suggest formation of PMP by the hydrolysis of cycloserines. Mutational studies suggest that Ser78 and Gln77 are key determinants of enzyme specificity and the phenolate of Tyr287 is responsible for C alpha proton abstraction from D-Cys. Based on these studies, a probable mechanism for the degradation of D-Cys by StDCyD is proposed.
Resumo:
The study of anticancer agents that act via stabilization of telomeric G-quadruplex DNA (G4DNA) is important because such agents often inhibit telomerase activity. Several types of G4DNA binding ligands are known. In these studies, the target structures often involve a single G4 DNA unit formed by short DNA telomeric sequences. However, the 3'-terminal single-stranded human telomeric DNA can form higher-order structures by clustering consecutive quadruplex units (dimers or nmers). Herein, we present new synthetic gemini (twin) bisbenzimidazole ligands, in which the oligo-oxyethylene spacers join the two bisbenzimidazole units for the recognition of both monomeric and dimeric G4DNA, derived from d(T2AG3)4 and d(T2AG3) 8 human telomeric DNA, respectively. The spacer between the two bisbenzimidazoles in the geminis plays a critical role in the G4DNA stability. We report here (i) synthesis of new effective gemini anticancer agents that are selectively more toxic towards the cancer cells than the corresponding normal cells; (ii) formation and characterization of G4DNA dimers in solution as well as computational construction of the dimeric G4DNA structures. The gemini ligands direct the folding of the single-stranded DNA into an unusually stable parallel-stranded G4DNA when it was formed in presence of the ligands in KCl solution and the gemini ligands show spacer length dependent potent telomerase inhibition properties.
Resumo:
Pyridoxal 5'-phosphate (PLP)-dependent enzymes utilize the unique chemistry of a pyridine ring to carry out diverse reactions involving amino acids. Diaminopropionate (DAP) ammonia-lyase (DAPAL) is a prokaryotic PLP-dependent enzyme that catalyzes the degradation of D-and L-forms of DAP to pyruvate and ammonia. Here, we report the first crystal structure of DAPAL from Escherichia coli (EcDAPAL) in tetragonal and monoclinic forms at 2.0 and 2.2 angstrom resolutions, respectively. Structures of EcDAPAL soaked with substrates were also determined. EcDAPAL has a typical fold type II PLP-dependent enzyme topology consisting of a large and a small domain with the active site at the interface of the two domains. The enzyme is a homodimer with a unique biological interface not observed earlier. Structure of the enzyme in the tetragonal form had PLP bound at the active site, whereas the monoclinic structure was in the apo-form. Analysis of the apo and holo structures revealed that the region around the active site undergoes transition from a disordered to ordered state and assumes a conformation suitable for catalysis only upon PLP binding. A novel disulfide was found to occur near a channel that is likely to regulate entry of ligands to the active site. EcDAPAL soaked with DL-DAP revealed density at the active site appropriate for the reaction intermediate aminoacrylate, which is consistent with the observation that EcDAPAL has low activity under crystallization conditions. Based on the analysis of the structure and results of site-directed mutagenesis, a two-base mechanism of catalysis involving Asp(120) and Lys(77) is suggested.
Resumo:
A computational pipeline PocketAnnotate for functional annotation of proteins at the level of binding sites has been proposed in this study. The pipeline integrates three in-house algorithms for site-based function annotation: PocketDepth, for prediction of binding sites in protein structures; PocketMatch, for rapid comparison of binding sites and PocketAlign, to obtain detailed alignment between pair of binding sites. A novel scheme has been developed to rapidly generate a database of non-redundant binding sites. For a given input protein structure, putative ligand-binding sites are identified, matched in real time against the database and the query substructure aligned with the promising hits, to obtain a set of possible ligands that the given protein could bind to. The input can be either whole protein structures or merely the substructures corresponding to possible binding sites. Structure-based function annotation at the level of binding sites thus achieved could prove very useful for cases where no obvious functional inference can be obtained based purely on sequence or fold-level analyses. An attempt has also been made to analyse proteins of no known function from Protein Data Bank. PocketAnnotate would be a valuable tool for the scientific community and contribute towards structure-based functional inference. The web server can be freely accessed at http://proline.biochem.iisc.ernet.in/pocketannotate/.