450 resultados para Hydrokinetic energy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a method of tracking the peak power in a wind energy conversion system (WECS) is proposed, which is independent of the turbine parameters and air density. The algorithm searches for the peak power by varying the speed in the desired direction. The generator is operated in the speed control mode with the speed reference being dynamically modified in accordance with the magnitude and direction of change of active power. The peak power points in the P-omega curve correspond to dP/domega = 0. This fact is made use of in the optimum point search algorithm. The generator considered is a wound rotor induction machine whose stator is connected directly to the grid and the rotor is fed through back-to-back pulse-width-modulation (PWM) converters. Stator flux-oriented vector control is applied to control the active and reactive current loops independently. The turbine characteristics are generated by a dc motor fed from a commercial dc drive. All of the control loops are executed by a single-chip digital signal processor (DSP) controller TMS320F240. Experimental results show that the performance of the control algorithm compares well with the conventional torque control method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead ruthenate is used as a bifunctional electrocatalyst for both oxygen evolution and reduction and as a conducting component in thick-film resistors. It also has potential applications in supercapacitors and solid oxide fuel cells. However, thermodynamic properties of the compound have not been reported in the literature. The standard Gibbs energy of formation has now been determined in the temperature range from 873 to 1123 K using a solid-state cell incorporating yttria-stabilized zirconia (YSZ) as the electrolyte, a mixture of PbO + Pb2Ru2O6.5 + Ru as the measuring electrode, and Ru + RuO2 as the reference. The design of the measuring electrode is based on a study of phase relations in the ternary system Pb–Ru–O at 1123 K. For the reaction,S0884291400095625_eqnU1 the standard enthalpy of formation and standard entropy at 298.15 K are estimated from the high-temperature measurements. An oxygen potential diagram for the system Pb–Ru–O is composed based on data obtained in this study and auxiliary information from the literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the synthesis of CdSe magic-sized clusters (MSCs) and their evolution into 1D rod and wires retaining the diameter of the order of MSCs. At the beginning of the reaction, different classes of stable MSCs with band gaps of 3.02 eV and 2.57 eV are formed, which exhibit sharp band edge photoluminescence features with FWHM in the order of similar to 13 nm. Reaction annealing time was carried out in order to monitor the shape evolution of the MSCs. We find that magic sized CdSe evolve into 1D rod and wires retaining the same diameter upon increasing annealing time. We observed the gradual emergence of new red shifted emission peaks during this shape evolution process, which emerge as a result of one dimensional energy transfer within the magic sized clusters during their subsequent transformation into rods and wires. The smallest, the second smallest sized MSC and the wires sequentially act as donors and acceptors during the size evolution from small MSCs to larger ones, and then eventually to wires. Steady-state and time-resolved luminescent spectroscopy revealed Forster resonance energy transfer (FRET) between the MSCs to the rods and wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ferroelectric Pb(Zr0.53Ti0.47)O-3 (PZT) and SrBi2Ta2O9 (SBT) thin films were prepared by laser ablation technique. The dielectric analysis, capacitance-voltage, ferroelectric hysteresis and DC leakage current measurements were performed before and after 50 MeV Li3+ ion irradiation. In both thin films, the irradiation produced some amount of amorphisation, considerable degradation in the ferroelectric properties and change in DC conductivity. On irradiation of these thin films, the phase transition temperature [T-c] of PZT decreased considerably from 628 to 508 K, while SBT exhibited a broad and diffuse transition with its T-c decreased from 573 to 548 K. The capacitance-voltage curve at 100 kHz showed a double butterfly loop with a large decrease in the capacitance and switching voltage. There was decrease in the ferroelectric hysteresis loop, remanant polarisation and coercive field. After annealing at a temperature of 673 K for 10 min while PZT partially regained the ferroelectric properties, while SBT did not. The DC conductivity measurements showed a shift in the onset of non-linear conduction region in irradiated SBT. The degradation of ferroelectric properties of the irradiated thin films is attributed to the irradiation-induced partial amorphization and the pinning of the ferroelectric domains by trapped charges. The regaining of properties after annealing is attributed to the thermal annealing of the defects generated during the irradiation. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a synthesis of assessment of sustainable biomass production potential in six Asian countries-China, India, Malaysia, Philippines, Sri Lanka and Thailand, and is based on the detailed studies carried out in these countries under the Asian Regional Research Programme in Energy, Environment and Climate (ARRPEEC). National level studies were undertaken to estimate land availability for biomass production, identify and evaluate the biomass production options in terms of yield per hectare and financial viability, estimate sustainable biomass production for energy, and estimate the energy potential of biomass production in the six Asian countries. Sustainable biomass production from plantation is estimated to be in the range of 182.5-210.5, 62-310, 0.4-1.7, 3.7-20.4, 2.0-9.9 and 11.6-106.6 Mt yr(-1) for China, India, Malaysia, Philippines, Sri Lanka and Thailand, respectively. The maximum annual electricity generation potential, using advanced technologies, from the sustainable biomass production is estimated to be about 27, 114, 4.5, 79, 254 and 195 percentage of the total electricity generation in year 2000 in China, India, Malaysia, Philippines, Sri Lanka and Thailand, respectively. Investment cost for bioenergy production varies from US$381 to 1842 ha(-1) in the countries considered in this study; investment cost for production of biomass varies from US$5.1 to 23 t(-1). (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All most all theoretical models assume spherical nanoparticles. However, thermodynamic properties of non-spherical nanoparticles are the subject of recent interests. In this article, we have discussed the size-dependent cohesive energy and melting of non-spherical nanoparticles based on liquid-drop model. The surface to volume ratio is different for different shapes of nanoparticles and as a consequence, the variation of cohesive energy and melting of non-spherical nanoparticles is different from that of spherical case. By analyzing the reported experimental results, it has been observed that liquid-drop model can be used to understand the size-dependent cohesive energy and melting of non-spherical nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a dynamic voltage frequency control scheme for a 256 X 64 SRAM block for reducing the energy in active mode and stand-by mode. The DVFM control system monitors the external clock and changes the supply voltage and the body bias so as to achieve a significant reduction in energy. The behavioral model of the proposed DVFM control system algorithm is described and simulated in HDL using delay and energy parameters obtained through SPICE simulation. The frequency range dictated by an external controller is 100 MHz to I GHz. The supply voltage of the complete memory system is varied in steps of 50 mV over the range of 500 mV to IV. The threshold voltage range of operation is plusmn100 mV around the nominal value, achieving 83.4% energy reduction in the active mode and 86.7% in the stand-by mode. This paper also proposes a energy replica that is used in the energy monitor subsystem of the DVFM system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh network, where the nodes in the network are subjected to maximum energy expenditure rates. We model link contention in the wireless network using the contention graph and we model energy expenditure rate constraint of nodes using the energy expenditure rate matrix. We formulate the problem as an aggregate utility maximization problem and apply duality theory in order to decompose the problem into two sub-problems namely, network layer routing and congestion control problem and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. We study the e�ects of energy expenditure rate constraints of the nodes on the optimal throughput of the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic polymer-metal composites (IPMC), piezoelectric polymer composites and nematic elastomer composites are materials, which exhibit characteristics of both sensors and actuators. Large deformation and curvature are observed in these systems when electric potential is applied. Effects of geometric non-linearity due to the chargeinduced motion in these materials are poorly understood. In this paper, a coupled model for understanding the behavior of an ionic polymer beam undergoing large deformation and large curvature is presented. Maxwell's equations and charge transport equations are considered which couple the distribution of the ion concentration and the pressure gradient along length of a cantilever beam with interdigital electrodes. A nonlinear constitutive model is derived accounting for the visco-elasto-plastic behavior of these polymers and based on the hypothesis that the presence of electrical charge stretches/contracts bonds, which give rise to electrical field dependent softening/hardening. Polymer chain orientation in statistical sense plays a role on such softening or hardening. Elementary beam kinematics with large curvature is considered. A model for understanding the deformation due to electrostatic repulsion between asymmetrical charge distributions across the cross-sections is presented. Experimental evidence that Silver(Ag) nanoparticle coated IPMCs can be used for energy harvesting is reported. An IPMC strip is vibrated in different environments and the electric power against a resistive load is measured. The electrical power generated was observed to vary with the environment with maximum power being generated when the strip is in wet state. IPMC based energy harvesting systems have potential applications in tidal wave energy harvesting, residual environmental energy harvesting to power MEMS and NEMS devices.