280 resultados para HEAT EXCHANGER EFFICIENCY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microscopic electron theory based on the pseudopotential formalism has been applied to the calculation of the heats of mixing and of activities in liquid Al·Sn alloys. The calculated values for both quantities were found to be in reasonable agreement with ,the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical properties of orthorhombic Pr(0.6)Sr(0.4)MnO(3) single crystals were investigated by a series of static magnetization measurements along the three different crystallographic axes as well as by specific heat measurements. A careful range-of-fitting-analysis of the magnetization and susceptibility data obtained from the modified Arrott plots shows that Pr(0.6)Sr(0.4)MnO(3) has a very narrow critical regime. Nevertheless, the system belongs to the three-dimensional (3D) Heisenberg universality class with short-range exchange. The critical exponents obey Widom scaling and are in excellent agreement with the single scaling equation of state M(H,epsilon) = vertical bar epsilon vertical bar(beta) f(+/-)(H/vertical bar epsilon vertical bar((beta+gamma)); with f(+) for T > T(c) and f(-) for T < T(c). A detailed analysis of the specific heat that account for all relevant contributions allows us to extract and analyze the contribution related to the magnetic phase transition. The specific heat indicates the presence of a linear electronic term at low temperatures and a prominent contribution from crystal field excitations of Pr. A comparison with data from literature for PrMnO(3) shows that a Pr-Mn magnetic exchange is responsible for a sizable shift in the lowest lying excitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In lean premixed pre-vaporized (LPP) combustion, controlled atomization, dispersion and vaporization of different types of liquid fuel in the premixer are the key factors required to stabilize the combustion process and improve the efficiency. The dispersion and vaporization process for biofuels and conventional fuels sprayed into a crossflow pre-mixer have been simulated and analyzed with respect to vaporization rate, degree of mixedness and homogeneity. Two major biofuels under investigation are Ethanol and Rapeseed Methyl Esters (RME), while conventional fuels are gasoline and jet-A. First, the numerical code is validated by comparing with the experimental data of single n-heptane and decane droplet evaporating under both moderate and high temperature convective air now. Next, the spray simulations were conducted with monodispersed droplets with an initial diameter of 80 mu m injected into a turbulent crossflow of air with a typical velocity of 10 m/s and temperature of around 800K. Vaporization time scales of different fuels are found to be very different. The droplet diameter reduction and surface temperature rise were found to be strongly dependent on the fuel properties. Gasoline droplet exhibited a much faster vaporization due a combination of higher vapor pressure and smaller latent heat of vaporization compared to other fuels. Mono-dispersed spray was adopted with the expectation of achieving more homogeneous fuel droplet size than poly-dispersed spray. However, the diameter histogram in the zone near the pre-mixer exit shows a large range of droplet diameter distributions for all the fuels. In order to improve the vaporization performance, fuels were pre-heated before injection. Results show that the Sauter mean diameter of ethanol improved from 52.8% of the initial injection size to 48.2%, while jet-A improved from 48.4% to 18.6% and RME improved from 63.5% to 31.3%. The diameter histogram showed improved vaporization performance of jet-A. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral efficiency is a key characteristic of cellular communications systems, as it quantifies how well the scarce spectrum resource is utilized. It is influenced by the scheduling algorithm as well as the signal and interference statistics, which, in turn, depend on the propagation characteristics. In this paper we derive analytical expressions for the short-term and long-term channel-averaged spectral efficiencies of the round robin, greedy Max-SINR, and proportional fair schedulers, which are popular and cover a wide range of system performance and fairness trade-offs. A unified spectral efficiency analysis is developed to highlight the differences among these schedulers. The analysis is different from previous work in the literature in the following aspects: (i) it does not assume the co-channel interferers to be identically distributed, as is typical in realistic cellular layouts, (ii) it avoids the loose spectral efficiency bounds used in the literature, which only considered the worst case and best case locations of identical co-channel interferers, (iii) it explicitly includes the effect of multi-tier interferers in the cellular layout and uses a more accurate model for handling the total co-channel interference, and (iv) it captures the impact of using small modulation constellation sizes, which are typical of cellular standards. The analytical results are verified using extensive Monte Carlo simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition, structural, electrical, and optical properties of as-grown and heat treated tin-mono-sulfide (SnS) ultra-thin films have been studied. The ultra-thin SnS films were prepared on glass substrates by thermal resistive evaporation technique. All the SnS films contained nanocrystallites and exhibited p-type conductivity with a low Hall-mobility, <50 cm(2)/Vs. All these films are highly tin rich in nature and exhibited orthorhombic crystal structure. As compared to other films, the SnS films annealed at 300 degrees C showed a low electrical resistivity of similar to 36 Omega cm with an optical band gap of similar to 1.98 eV. The observed electrical and optical properties of all the films are discussed based on their composition and structural parameters. These nanocrystalline ultra-thin SnS films could be expected as a buffer layer for the development of tandem solar cell devices due to their low-resistivity and high absorbability with an optimum band gap. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work reported here is concerned with a detailed thermochemical evaluation of the flaming mode behaviour of a gasifier based stove. Determination of the gas composition over the fuel bed, surface and gas temperatures in the gasification process constitute principal experimental features. A simple atomic balance for the gasification reaction combined with the gas composition from the experiments is used to determine the CH(4) equivalent of higher hydrocarbons and the gasification efficiency (eta g). The components of utilization efficiency, namely, gasification-combustion and heat transfer are explored. Reactive flow computational studies using the measured gas composition over the fuel bed are used to simulate the thermochemical flow field and heat transfer to the vessel; hither-to-ignored vessel size effects in the extraction of heat from the stove are established clearly. The overall flaming mode efficiency of the stove is 50-54%; the convective and radiative components of heat transfer are established to be 45-47 and 5-7% respectively. The efficiency estimates from reacting computational fluid dynamics (RCFD) compare well with experiments. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The change in thermodynamic quantities (e. g., entropy, specific heat etc.) by the application of magnetic field in the case of the high-T-c superconductor YBCO system is examined phenomenological by the Ginzburg-Landau theory of anisotropic type-II superconductors. An expression for the change in the entropy (Delta S) and change in specific heat (Delta C) in a magnetic field for any general orientation of an applied magnetic field B-a with respect to the crystallographic c-axis is obtained. The observed large reduction of specific heat anomaly just below the superconducting transition and the observed variation of entropy with magnetic field are explained quantitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectral photocurrent characteristics of two donor-acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) blended with a fullerene derivative [6,6]-phenyl C-61-butyric acid methyl ester (PCBM) were studied using Fourier-transform photocurrent spectroscopy (FTPS) and monochromatic photocurrent (PC) method. PDPP-BBT: PCBM shows the onset of the lowest charge transfer complex (CTC) state at 1.42 eV, whereas TDPP-BBT: PCBM shows no evidence of the formation of a midgap CTC state. The FTPS and PC spectra of P3HT:PCBM are also compared. The larger singlet state energy difference of TDPP-BBT and PCBM compared to PDPP-BBT/P3HT and PCBM obliterates the formation of a midgap CTC state resulting in an enhanced photovoltaic efficiency over PDPP-BBT: PCBM. (C) 2011 American Institute of Physics. [doi:10.1063/1.3670043]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of deoxycholic and cholic acid-derived oligomers were synthesized and their ability to extract hydrophilic dye molecules of different structure, size, and functional groups into nonpolar media was studied. The structure of the dye and dendritic effect in the extraction process was examined using absorption spectroscopy and dynamic light scattering (DLS). The efficiency of structurally preorganized oligomers in the aggregation process was evaluated by 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence studies. The possible formation of globular structures for higher-generation molecules was investigated by molecular modeling studies and the results were correlated with the anomaly observed in the extraction process with this molecule. The ability of these molecules for selective extraction of specific dyes from blended colors is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35–40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15–25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable bench mark experimental database in the separated hypersonic flow regime is necessary to validate high resolution CFD codes. In this paper we report the surface pressure and heat transfer measurements carried out on double cones (first cone semi-apex angle = 15, 25 deg.; second cone semi-apex angle= 35, 68 deg.) at hypersonic speeds that will be useful for CFD code validation studies. The surface pressure measurements are carried out at nominal Mach number of 8.35 in the IISc hypersonic wind tunnel. On the other hand the surface heat transfer measurements are carried out at a nominal Mach number of 5.75 in the IISc hypersonic shock tunnel. The flow separation point on the first cone, flow reattachment on the second cone and the wild fluctuation of the transmitted shock on the second cone surface (25/68 deg. double cone) in the presence of severe adverse pressure gradient are some of the flow features captured in the measurements. The results from the CFD studies indicate good agreement with experiments in the attached flow regime while considerable differences are noticeable in the separated flow regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new automatic generation controller (AGC) design approach, adopting reinforcement learning (RL) techniques, was recently pro- posed [1]. In this paper we demonstrate the design and performance of controllers based on this RL approach for automatic generation control of systems consisting of units having complex dynamics—the reheat type of thermal units. For such systems, we also assess the capabilities of RL approach in handling realistic system features such as network changes, parameter variations, generation rate constraint (GRC), and governor deadband.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre-mRNA splicing occurs in spliceosomes whose assembly and activation are critical for splice site selection and catalysis. The highly conserved NineTeen complex protein complex stabilizes various snRNA and protein interactions early in the spliceosome assembly pathway. Among several NineTeen complex-associated proteins is the nonessential protein Bud31/Ycr063w, which is also a component of the Cef1p subcomplex. A role for Bud31 in pre-mRNA splicing is implicated by virtue of its association with splicing factors, but its specific functions and spliceosome interactions are uncharacterized. Here, using in vitro splicing assays with extracts from a strain lacking Bud31, we illustrate its role in efficient progression to the first catalytic step and its requirement for the second catalytic step in reactions at higher temperatures. Immunoprecipitation of functional epitope-tagged Bud31 from in vitro reactions showed that its earliest association is with precatalytic B complex and that the interaction continues in catalytically active complexes with stably bound U2, U5, and U6 small nuclear ribonucleoproteins. In complementary experiments, wherein precatalytic spliceosomes are selected from splicing reactions, we detect the occurrence of Bud31. Cross-linking of proteins to pre-mRNAs with a site-specific 4-thio uridine residue at the -3 position of exon 1 was tested in reactions with WT and bud31 null extracts. The data suggest an altered interaction between a similar to 25-kDa protein and this exonic residue of pre-mRNAs in the arrested bud31 null spliceosomes. These results demonstrate the early spliceosomal association of Bud31 and provide plausible functions for this factor in stabilizing protein interactions with the pre-mRNA.