347 resultados para Grafting influence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of a study on the effect of alumina nano-fillers on electrical tree growth in epoxy insulation. Treeing experiments were conducted at a fixed ac voltage of 15 kV, 50 Hz on unfilled epoxy samples as well as epoxy nanocomposites with different loadings of alumina nano-fillers. Time for tree inception as well as tree growth patterns were studied. The results show that there is a significant improvement in tree initiation time with the increase in nano-filler loading. Different tree growth patterns as well as slower tree growth with increasing filler loadings were observed in epoxy nanocomposites. The nature of the tree channel and the elemental composition of the material on the inner lining of the tree channels have been studied using SEM imaging and EDAX analysis respectively of the cut section of the tree channels. It has been shown that the type of bonding at the interface has an influence on the electrical tree growth pattern. The nature of the bonding at the interface between the epoxy and the nano-filler has been studied using FTIR spectrometry. Finally the influence of the interface on tree growth phenomena in nanocomposites has been explained by a physical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous silicon carbide (a-Si(1-x)C(x)) films were deposited on silicon (100) and quartz substrates by pulsed DC reactive magnetron sputtering of silicon in methane (CH(4))-Argon (Ar) atmosphere. The influence of substrate temperature and target power on the composition, carbon bonding configuration, band gap, refractive index and hardness of a-SiC films has been investigated. Increase in substrate temperature results in slightly decreasing the carbon concentration in the films but favors silicon-carbon (Si-C) bonding. Also lower target powers were favorable towards Si-C bonding. X-ray photoelectron spectroscopy (XPS) results agree with the Fourier Transform Infrared (FTIR), UV-vis spectroscopy results. Increase in substrate temperature resulted in increased hardness of the thin films from 13 to 17 GPa and the corresponding bandgap varied from 2.1 to 1.8 eV. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on the diffusion of methane in a zeolite structure type LTA (as per IZA nomenclature) have indicated that different types of methane zeolite potentials exist in the literature in which methane is treated within the united-atom model. One set of potentials, referred to as model A, has a methane oxygen diameter of 3.14 angstrom, while another set of potential parameters, model B, employs a larger value of 3.46 angstrom. Fritzsche and co-workers (1993) have shown that these two potentials lead to two distinctly different energetic barriers for the passage of methane through the eight-ring window in the cation-free form of zeolite A. Here, we compute the variation of the self-diffusivity (D) with loading (c) for these two types of potentials and show that this slight variation in the diameter changes the concentration dependence qualitatively: thus, D decreases monotonically with c for model A, while D increases and goes through a maximum before finally decreasing for model B. This effect and the surprising congruence of the diffusion coefficients for both models at high loadings is examined in detail at the molecular level. Simulations for different temperatures reveal the Arrhenius behaviour of the self-diffusion coefficient. The apparent activation energy is found to vary with the loading. We conclude that beside the cage-to-cage jumps, which are essential for the migration of the guest molecules, at high concentrations migration within the cage and guest guest interactions with other molecules become increasingly dominant influences on the diffusion coefficient and make the guest zeolite interaction less important for both model A and model B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of boron to cast Ti-6Al-4V alloy leads to significant refinement in grain size, which in turn improves processibilty as well as the mechanical properties of the as-cast alloy. Room temperature tensile and fatigue properties of Wrought Ti-6Al-4V-B alloys with B up to 0.09 wt.% are investigated. Thermo-mechanical processing at 950 degrees C caused kinking of alpha lamellae and alignment of TiB particles in the flow direction with a negligible change in prior beta grain and colony sizes, indicating the absence of dynamic recrystallisation during forging. Characterisation with the aid of X-ray and electron back scattered diffraction reveal a strong basal texture in B free alloy which gets randomised with the 0.09B addition in the forged condition. Marginal enhancement in tensile and fatigue properties upon forging is noted. B free wrought Ti-6Al-4V alloy exhibits better tensile strength as compared to B containing alloy, due to the operation of < c+a > slip on pyramidal planes with high value of CRSS as compared to < a > slip on basal and prismatic planes. Decrease in fatigue strength of Ti-6Al-4V-0.04B in as-cast and the wrought state is observed due to increase in the volume fraction of grain boundary a phase with B addition, which acts as a crack nucleation site. No significant effect of TiB particles on tensile and fatigue properties is observed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rathour RK, Narayanan R. Influence fields: a quantitative framework for representation and analysis of active dendrites. J Neurophysiol 107: 2313-2334, 2012. First published January 18, 2012; doi:10.1152/jn.00846.2011.-Neuronal dendrites express numerous voltage-gated ion channels (VGICs), typically with spatial gradients in their densities and properties. Dendritic VGICs, their gradients, and their plasticity endow neurons with information processing capabilities that are higher than those of neurons with passive dendrites. Despite this, frameworks that incorporate dendritic VGICs and their plasticity into neurophysiological and learning theory models have been far and few. Here, we develop a generalized quantitative framework to analyze the extent of influence of a spatially localized VGIC conductance on different physiological properties along the entire stretch of a neuron. Employing this framework, we show that the extent of influence of a VGIC conductance is largely independent of the conductance magnitude but is heavily dependent on the specific physiological property and background conductances. Morphologically, our analyses demonstrate that the influences of different VGIC conductances located on an oblique dendrite are confined within that oblique dendrite, thus providing further credence to the postulate that dendritic branches act as independent computational units. Furthermore, distinguishing between active and passive propagation of signals within a neuron, we demonstrate that the influence of a VGIC conductance is spatially confined only when propagation is active. Finally, we reconstruct functional gradients from VGIC conductance gradients using influence fields and demonstrate that the cumulative contribution of VGIC conductances in adjacent compartments plays a critical role in determining physiological properties at a given location. We suggest that our framework provides a quantitative basis for unraveling the roles of dendritic VGICs and their plasticity in neural coding, learning, and homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of Ni-49 at.% Ti were deposited by DC magnetron sputtering on silicon substrates at 300 degrees C. The as-deposited amorphous films were annealed at a vacuum of 10(-6) mbar at various temperatures between 300 and 650 degrees C to study the effect of annealing on microstructure and mechanical properties. The as-deposited films showed partial crystallization on annealing at 500 degrees C. At 500 degrees C, a distinct oxidation layer, rich in titanium but depleted in Ni, was seen on the film surface. A gradual increase in thickness and number of layers of various oxide stoichiometries as well as growth of triangular shaped reaction zones were seen with increase in annealing temperature up to 650 degrees C. Nanoindentation studies showed that the film hardness values increase with increase in annealing temperature up to 600 degrees C and subsequently decrease at 650 degrees C. The results were explained on the basis of the change in microstructure as a result of oxidation on annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated quadratic nonlinearity (beta(HRS)) and linear and circular depolarization ratios (D and D', respectively) of a series of 1:1 complexes of tropyliumtetrafluoroborate as a cation and methyl-substituted benzenes as pi-donors by making polarization resolved hyper-Rayleigh scattering measurements in solution. The measured D and D' values are much lower than the values expected from a typical sandwich or a T-shaped geometry of a complex. In the cation-pi complexes studied here, the D value varies from 1.36 to 1.46 and D' from 1.62 to 1.72 depending on the number of methyl substitutions on the benzene ring. In order to probe it further, beta, D and D' were computed using the Zerner intermediate neglect of differential overlap-correction vector self-consistent reaction field technique including single and double configuration interactions in the absence and presence of BF4- anion. In the absence of the anion, the calculated value of D varies from 4.20 to 4.60 and that of D' from 2.45 to 2.72 which disagree with experimental values. However, by arranging three cation-pi BF4- complexes in a trigonal symmetry, the computed values are brought to agreement with experiments. When such an arrangement was not considered, the calculated beta values were lower than the experimental values by more than a factor of two. This unprecedented influence of the otherwise ``unimportant'' anion in solution on the beta value and depolarization ratios of these cation-pi complexes is highlighted and emphasized in this paper. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4716020]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In steel refining process, an increase of interfacial area between the metal and slag through the metal droplets emulsified into the slag, so-called ``metal emulsion'', is one prevailing view for improving the reaction rate. The formation of metal emulsion was experimentally evaluated using Al-Cu alloy as metal phase and chloride salt as slag phase under the bottom bubbling condition. Samples were collected from the center of the salt phase in the container. Large number of metal droplets were separated from the salt by dissolving it into water. The number, surface area, and weight of the droplets increased with the gas flow rate and have local maximum values. The formation and sedimentation rates of metal droplets were estimated using a mathematical model. The formation rate increased with the gas flow rate and has a local maximum value as a function of gas flow rate, while the sedimentation rate is independent of the gas flow rate under the bottom bubbling condition. Three types of formation mode of metal emulsion, which occurred by the rupture of metal film around the bubble, were observed using high speed camera. During the process, an elongated column covered with metal film was observed with the increasing gas flow rate. This elongated column sometimes reached to the top surface of the salt phase. In this case, it is considered that fine droplets were not formed and in consequence, the weight of metal emulsion decreased at higher gas flow rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of clays are highly dependent not only on the stress/strain ratio to which the material is subjected but also on the chemistry of the pore fluids which in turn affects the intergranular or the effective stresses. Atterberg limits and vane shear tests were performed with different pore fluids in order to observe how the fine-grained material mechanically responded. The diffuse double layer theory has been used to interpret the data of vane shear tests in order to explain the variation of geotechnical responses with the different clays. Van der Waals forces and double layer forces were obtained and capillary forces calculated. The results show that while for kaolinite and illite the chemistry of the pore fluids has no influence on the water content and hence on the mechanical behaviour of the material, Na-smectite shows a strong correlation between the dielectric constant of the pore fluids and an increase in undrained shear strength. The data obtained extends an understanding of the influence of the dielectric constant (epsilon) of the pore fluids on the geotechnical properties of fine-grained materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the current-voltage characteristics of carbon nanotube arrays and shown that the current through the arrays increases rapidly with applied voltage before the breakdown occurs. Simultaneous measurements of current and temperature at one end of the arrays suggest that the rapid increase of current is due to Joule heating. The current through the array and the threshold voltage are found to increase with decreasing pressure. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3702777]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two protein tyrosine phosphatase (PTP) domains in bi-domain PTPs share high sequence and structural similarity. However, only one of the two PIP domains is catalytically active. Here we describe biochemical studies on the two tandem PTP domains of the bi-domain PTP, PTP99A. Phosphatase activity, monitored using small molecule as well as peptide substrates, revealed that the inactive (D2) domain activates the catalytic (D1) domain. Thermodynamic measurements suggest that the inactive D2 domain stabilizes the bi-domain (D1-D2) protein. The mechanism by which the D2 domain activates and stabilizes the bi-domain protein is governed by few interactions at the inter-domain interface. In particular, mutating Lys990 at the interface attenuates inter-domain communication. This residue is located at a structurally equivalent location to the so-called allosteric site of the canonical single domain PIP, PTP1B. These observations suggest functional optimization in bi-domain PTPs whereby the inactive PTP domain modulates the catalytic activity of the bi-domain enzyme. (C) 2012 Elsevier B.V. All rights reserved.