295 resultados para Finite-depth Aquifer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The way in which basal tractions, associated with mantle convection, couples with the lithosphere is a fundamental problem in geodynamics. A successful lithosphere-mantle coupling model for the Earth will satisfy observations of plate motions, intraplate stresses, and the plate boundary zone deformation. We solve the depth integrated three-dimensional force balance equations in a global finite element model that takes into account effects of both topography and shallow lithosphere structure as well as tractions originating from deeper mantle convection. The contribution from topography and lithosphere structure is estimated by calculating gravitational potential energy differences. The basal tractions are derived from a fully dynamic flow model with both radial and lateral viscosity variations. We simultaneously fit stresses and plate motions in order to delineate a best-fit lithosphere-mantle coupling model. We use both the World Stress Map and the Global Strain Rate Model to constrain the models. We find that a strongly coupled model with a stiff lithosphere and 3-4 orders of lateral viscosity variations in the lithosphere are best able to match the observational constraints. Our predicted deviatoric stresses, which are dominated by contribution from mantle tractions, range between 20-70 MPa. The best-fitting coupled models predict strain rates that are consistent with observations. That is, the intraplate areas are nearly rigid whereas plate boundaries and some other continental deformation zones display high strain rates. Comparison of mantle tractions and surface velocities indicate that in most areas tractions are driving, although in a few regions, including western North America, tractions are resistive. Citation: Ghosh, A., W. E. Holt, and L. M. Wen (2013), Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical Chapman-Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262-5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier-Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor-Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of sampling and reconstruction of two-dimensional (2-D) finite-rate-of-innovation (FRI) signals. We propose a three-channel sampling method for efficiently solving the problem. We consider the sampling of a stream of 2-D Dirac impulses and a sum of 2-D unit-step functions. We propose a 2-D causal exponential function as the sampling kernel. By causality in 2-D, we mean that the function has its support restricted to the first quadrant. The advantage of using a multichannel sampling method with causal exponential sampling kernel is that standard annihilating filter or root-finding algorithms are not required. Further, the proposed method has inexpensive hardware implementation and is numerically stable as the number of Dirac impulses increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the wave propagation analysis of built-up composite structures is performed using frequency domain spectral finite elements, to study the high frequency wave responses. The paper discusses basically two methods for modeling stiffened structures. In the first method, the concept of assembly of 2D spectral plate elements is used to model a built-up structure. In the second approach, spectral finite element method (SFEM) model is developed to model skin-stiffener structures, where the skin is considered as plate element and the stiffener as beam element. The SFEM model developed using the plate-beam coupling approach is then used to model wave propagation in a multiple stiffened structure and also extended to model the stiffened structures with different cross sections such as T-section, I-section and hat section. A number of parametric studies are performed to capture the mode coupling, that is, the flexural-axial coupling present in the wave responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodic-finite-type shifts (PFT's) are sofic shifts which forbid the appearance of finitely many pre-specified words in a periodic manner. The class of PFT's strictly includes the class of shifts of finite type (SFT's). The zeta function of a PET is a generating function for the number of periodic sequences in the shift. For a general sofic shift, there exists a formula, attributed to Manning and Bowen, which computes the zeta function of the shift from certain auxiliary graphs constructed from a presentation of the shift. In this paper, we derive an interesting alternative formula computable from certain ``word-based graphs'' constructed from the periodically-forbidden word description of the PET. The advantages of our formula over the Manning-Bowen formula are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we compute the secrecy rate of decode-and-forward (DF) relay beamforming with finite input alphabet of size M. Source and relays operate under a total power constraint. First, we observe that the secrecy rate with finite-alphabet input can go to zero as the total power increases, when we use the source power and the relay weights obtained assuming Gaussian input. This is because the capacity of an eavesdropper can approach the finite-alphabet capacity of 1/2 log(2) M with increasing total power, due to the inability to completely null in the direction of the eavesdropper. We then propose a transmit power control scheme where the optimum source power and relay weights are obtained by carrying out transmit power (source power plus relay power) control on DF with Gaussian input using semi-definite programming, and then obtaining the corresponding source power and relay weights which maximize the secrecy rate for DF with finite-alphabet input. The proposed power control scheme is shown to achieve increasing secrecy rates with increasing total power with a saturation behavior at high total powers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the lower-bound finite element limit analysis, the stability of a long unsupported circular tunnel has been examined with an inclusion of seismic body forces. The numerical results have been presented in terms of a non-dimensional stability number (gamma H/c) which is plotted as a function of horizontal seismic earth pressure coefficient (k (h)) for different combinations of H/D and I center dot; where (1) H is the depth of the crest of the tunnel from ground surface, (2) D is the diameter of the tunnel, (3) k (h) is the earthquake acceleration coefficient and (4) gamma, c and I center dot define unit weight, cohesion and internal friction angle of soil mass, respectively. The stability numbers have been found to decrease continuously with an increase in k (h). With an inclusion of k (h), the plastic zone around the periphery of the tunnel becomes asymmetric. As compared to the results reported in the literature, the present analysis provides a little lower estimate of the stability numbers. The numerical results obtained would be useful for examining the stability of unsupported tunnel under seismic forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residue depth accurately measures burial and parameterizes local protein environment. Depth is the distance of any atom/residue to the closest bulk water. We consider the non-bulk waters to occupy cavities, whose volumes are determined using a Voronoi procedure. Our estimation of cavity sizes is statistically superior to estimates made by CASTp and VOIDOO, and on par with McVol over a data set of 40 cavities. Our calculated cavity volumes correlated best with the experimentally determined destabilization of 34 mutants from five proteins. Some of the cavities identified are capable of binding small molecule ligands. In this study, we have enhanced our depth-based predictions of binding sites by including evolutionary information. We have demonstrated that on a database (LigASite) of similar to 200 proteins, we perform on par with ConCavity and better than MetaPocket 2.0. Our predictions, while less sensitive, are more specific and precise. Finally, we use depth (and other features) to predict pK(a)s of GLU, ASP, LYS and HIS residues. Our results produce an average error of just <1 pH unit over 60 predictions. Our simple empirical method is statistically on par with two and superior to three other methods while inferior to only one. The DEPTH server (http://mspc.bii.a-star.edu.sg/depth/) is an ideal tool for rapid yet accurate structural analyses of protein structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load (P-uT) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method of modeling partial delamination in composite beams is proposed and implemented using the finite element method. Homogenized cross-sectional stiffness of the delaminated beam is obtained by the proposed analytical technique, including extension-bending, extension-twist and torsion-bending coupling terms, and hence can be used with an existing finite element method. A two noded C1 type Timoshenko beam element with 4 degrees of freedom per node for dynamic analysis of beams is implemented. The results for different delamination scenarios and beams subjected to different boundary conditions are validated with available experimental results in the literature and/or with the 3D finite element simulation using COMSOL. Results of the first torsional mode frequency for the partially delaminated beam are validated with the COMSOL results. The key point of the proposed model is that partial delamination in beams can be analyzed using a beam model, rather than using 3D or plate models. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of the present work is to analyze the influence of shoulder diameter and plunge depth on the formability of friction stir welded sheets. The base material used for welding and forming was AA6061-T6. Formability evaluation was performed through limiting dome height tests. The forming limit curve, FLC (only in the stretching region), thickness distribution, and strain hardening exponent of the weld region were monitored during formability studies. It is found from the work that the forming limit of friction stir welded sheets is better than unwelded sheets. In general, with an increase in shoulder diameter and plunge depth, the forming limit is found to improve considerably. With a decrease in thickness gradient severity and an increase in strain hardening exponent (n) of the weld region, the forming limit is found to increase. The increase in n value of the weld region is believed to occur because of the reduction in dislocation density. The maximum thickness difference is higher in the retreating side, rather than in the advancing side, of the weld. This is due to the differential straining and hardness levels attained by both sides during friction stir welding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, interference alignment for a class of Gaussian interference networks with general message demands, having line of sight (LOS) channels, at finite powers is considered. We assume that each transmitter has one independent message to be transmitted and the propagation delays are uniformly distributed between 0 and (L - 1) (L >; 0). If receiver-j, j ∈{1,2,..., J}, requires the message of transmitter-i, i ∈ {1, 2, ..., K}, we say (i, j) belongs to a connection. A class of interference networks called the symmetrically connected interference network is defined as a network where, the number of connections required at each transmitter-i is equal to ct for all i and the number of connections required at each receiver-j is equal to cr for all j, for some fixed positive integers ct and cr. For such networks with a LOS channel between every transmitter and every receiver, we show that an expected sum-spectral efficiency (in bits/sec/Hz) of at least K/(e+c1-1)(ct+1) (ct/ct+1)ct log2 (1+min(i, j)∈c|hi, j|2 P/WN0) can be achieved as the number of transmitters and receivers tend to infinity, i.e., K, J →∞ where, C denotes the set of all connections, hij is the channel gain between transmitter-i and receiver-j, P is the average power constraint at each transmitter, W is the bandwidth and N0 W is the variance of Gaussian noise at each receiver. This means that, for an LOS symmetrically connected interference network, at any finite power, the total spectral efficiency can grow linearly with K as K, J →∞. This is achieved by extending the time domain interference alignment scheme proposed by Grokop et al. for the k-user Gaussian interference channel to interference networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a strong-coupling (t << U) expansion technique for calculating the density profile for bosonic atoms trapped in an optical lattice with an overall harmonic trap at finite temperature and finite on-site interaction in the presence of superfluid regions. Our results match well with quantum Monte Carlo simulations at finite temperature. We also show that the superfluid order parameter never vanishes in the trap due to the proximity effect. Our calculations for the scaled density in the vacuum-to-superfluid transition agree well with the experimental data for appropriate temperatures. We present calculations for the entropy per particle as a function of temperature which can be used to calibrate the temperature in experiments. We also discuss issues connected with the demonstration of universal quantum critical scaling in the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Finite Feedback Scheme (FFS) for a quasi-static MIMO block fading channel with finite N-ary delay-free noise-free feedback consists of N Space-Time Block Codes (STBCs) at the transmitter, one corresponding to each possible value of feedback, and a function at the receiver that generates N-ary feedback. A number of FFSs are available in the literature that provably attain full-diversity. However, there is no known full-diversity criterion that universally applies to all FFSs. In this paper a universal necessary condition for any FFS to achieve full-diversity is given, and based on this criterion the notion of Feedback-Transmission duration optimal (FT-optimal) FFSs is introduced, which are schemes that use minimum amount of feedback N for the given transmission duration T, and minimum T for the given N to achieve full-diversity. When there is no feedback (N = 1) an FT-optimal scheme consists of a single STBC, and the proposed condition reduces to the well known necessary and sufficient condition for an STBC to achieve full-diversity. Also, a sufficient criterion for full-diversity is given for FFSs in which the component STBC yielding the largest minimum Euclidean distance is chosen, using which full-rate (N-t complex symbols per channel use) full-diversity FT-optimal schemes are constructed for all N-t > 1. These are the first full-rate full-diversity FFSs reported in the literature for T < N-t. Simulation results show that the new schemes have the best error performance among all known FFSs.