385 resultados para Field hockey


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to extremely low off state current (IOFF) and excellent sub-threshold characteristics, the tunnel field effect transistor (TFET) has attracted a lot of attention for low standby power applications. In this work, we aim to increase the on state current (ION) of the device. A novel device architecture with a SiGe source is proposed. The proposed structure shows an order of improvement in ION compared to the conventional Si structure. A process flow adaptable to conventional CMOS technology is also addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main idea proposed in this paper is that in a vertically aligned array of short carbon nanotubes (CNTs) grown on a metal substrate, we consider a frequency dependent electric field, so that the mode-specific propagation of phonons, in correspondence with the strained band structure and the dispersion curves, take place. We perform theoretical calculations to validate this idea with a view of optimizing the field emission behavior of the CNT array. This is the first approach of its kind, and is in contrast to the the conventional approach where a DC bias voltage is applied in order to observe field emission. A first set of experimental results presented in this paper gives a clear indication that phonon-assisted control of field emission current in CNT based thin film diode is possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to their distinct properties, carbon nanotubes (CNTs) have emerged as promising candidate for field emission devices. It has been found experimentally that the results related to the field emission performance show variability. The design of an efficient field emitting device requires the analysis of the variabilities with a systematic and multiphysics based modeling approach. In this paper, we develop a model of randomly oriented CNTs in a thin film by coupling the field emission phenomena, the electron-phonon transport and the mechanics of single isolated CNT. A computational scheme is developed by which the states of CNTs are updated in time incremental manner. The device current is calculated by using Fowler-Nordheim equation for field emission to study the performance at the device scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear electro-magnetic pulse (NEMP) simulators which are used in the simulation of transient electromagnetic fields due to a high altitude nuclear detonation are generally excited with a double exponential high voltage pulse. This results in a current distribution on the wires of the simulator and hence a transient electric field in the working volume of the simulator where the test object is kept. It is found that for the simulator under study, the current distribution is non-uniform and so is the field distribution along the width of the simulator in the working volume. To make the current distribution uniform, several methods have been suggested and the results of these methods are analyzed and suitable conclusions are arrived at from those results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study of symmetric or repeating patterns in scalar fields is important in scientific data analysis because it gives deep insights into the properties of the underlying phenomenon. Though geometric symmetry has been well studied within areas like shape processing, identifying symmetry in scalar fields has remained largely unexplored due to the high computational cost of the associated algorithms. We propose a computationally efficient algorithm for detecting symmetric patterns in a scalar field distribution by analysing the topology of level sets of the scalar field. Our algorithm computes the contour tree of a given scalar field and identifies subtrees that are similar. We define a robust similarity measure for comparing subtrees of the contour tree and use it to group similar subtrees together. Regions of the domain corresponding to subtrees that belong to a common group are extracted and reported to be symmetric. Identifying symmetry in scalar fields finds applications in visualization, data exploration, and feature detection. We describe two applications in detail: symmetry-aware transfer function design and symmetry-aware isosurface extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present low-temperature electrical transport experiments in five field-effect transistor devices consisting of monolayer, bilayer, and trilayer MoS(2) films, mechanically exfoliated onto Si/SiO(2) substrate. Our experiments reveal that the electronic states In all films are localized well up to room temperature over the experimentally accessible range of gate voltage. This manifests in two-dimensional (2D) variable range hopping (VRH) at high temperatures, while below similar to 30 K, the conductivity displays oscillatory structures In gate voltage arising from resonant tunneling at the localized sites. From the correlation energy (T(0)) of VRH and gate voltage dependence of conductivity, we suggest that Coulomb potential from trapped charges In the substrate is the dominant source of disorder in MoS(2) field-effect devices, which leads to carrier localization, as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of track foundation material gradually decreases due to insufficient lateral confinement, ballast fouling, and loss of shear strength of the subsurface soil under cyclic loading. This paper presents characterization of rail track subsurface to identify ballast fouling and subsurface layers shear wave velocity using seismic survey. Seismic surface wave method of multi-channel analysis of surface wave (MASW) has been carried out in the model track and field track for finding out shear wave velocity of the clean and fouled ballast and track subsurface. The shear wave velocity (SWV) of fouled ballast increases with increase in fouling percentage, and reaches a maximum value and then decreases. This character is similar to typical compaction curve of soil, which is used to define optimum and critical fouling percentage (OFP and CFP). Critical fouling percentage of 15 % is noticed for Coal fouled ballast and 25 % is noticed for clayey sand fouled ballast. Coal fouled ballast reaches the OFP and CFP before clayey sand fouled ballast. Fouling of ballast reduces voids in ballast and there by decreases the drainage. Combined plot of permeability and SWV with percentage of fouling shows that after critical fouling point drainage condition of fouled ballast goes below acceptable limit. Shear wave velocities are measured in the selected location in the Wollongong field track by carrying out similar seismic survey. In-situ samples were collected and degrees of fouling were measured. Field SWV values are more than that of the model track SWV values for the same degree of fouling, which might be due to sleeper's confinement. This article also highlights the ballast gradation widely followed in different countries and presents the comparison of Indian ballast gradation with international gradation standards. Indian ballast contains a coarser particle size when compared to other countries. The upper limit of Indian gradation curve matches with lower limit of ballast gradation curves of America and Australia. The ballast gradation followed by Indian railways is poorly graded and more favorable for the drainage conditions. Indian ballast engineering needs extensive research to improve presents track conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On increasing the coupling strength (lambda) of a non-Abelian gauge field that induces a generalized Rashba spin-orbit interaction, the topology of the Fermi surface of a homogeneous gas of noninteracting fermions of density rho similar to k(F)(3) undergoes a change at a critical value, lambda(T) approximate to k(F) [Phys. Rev. B 84, 014512 ( 2011)]. In this paper we analyze how this phenomenon affects the size and shape of a cloud of spin-1/2 fermions trapped in a harmonic potential such as those used in cold atom experiments. We develop an adiabatic formulation, including the concomitant Pancharatnam-Berry phase effects, for the one-particle states in the presence of a trapping potential and the gauge field, obtaining approximate analytical formulas for the energy levels for some high symmetry gauge field configurations of interest. An analysis based on the local density approximation reveals that, for a given number of particles, the cloud shrinks in a characteristic fashion with increasing.. We explain the physical origins of this effect by a study of the stress tensor of the system. For an isotropic harmonic trap, the local density approximation predicts a spherical cloud even for anisotropic gauge field configurations. We show, via a calculation of the cloud shape using exact eigenstates, that for certain gauge field configurations there is a systematic and observable anisotropy in the cloud shape that increases with increasing gauge coupling lambda. The reasons for this anisotropy are explained using the analytical energy levels obtained via the adiabatic approximation. These results should be useful in the design of cold atom experiments with fermions in non-Abelian gauge fields. An important spin-off of our adiabatic formulation is that it reveals exciting possibilities for the cold-atom realization of interesting condensed matter Hamiltonians by using a non-Abelian gauge field in conjunction with another potential. In particular, we show that the use of a spherical non-Abelian gauge field with a harmonic trapping potential produces a monopole field giving rise to a spherical geometry quantum Hall-like Hamiltonian in the momentum representation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectric materials (example: lead zirconate and modified lead zirconate stannate), in which a field-induced ferroelectric phase transition is feasible due to a small free energy difference between the ferroelectric and the antiferroelectric phases, are proven to be very good candidates for applications involving actuation and high charge storage devices. The property of reverse switching from the field-induced ferroelectric to antiferroelectric phases is studied as a function of temperature, applied electric field, and sample thickness in antiferroelectric lead zirconate thin films deposited by pulsed excimer laser ablation. The maximum released charge density was 22 μC/cm2 from a stored charge density of 36 μC/cm2 in a 0.55 μ thick lead zirconate thin film. This indicated that more than 60% of the stored charge could be released in less than 7 ns at room temperature for a field of 200 kV/cm. The content of net released charge was found to increase with increasing field strength, whereas with increasing temperature the released charge was found to decrease. Thickness-dependent studies on lead zirconate thin films showed that size effects relating to extrinsic and intrinsic pinning mechanisms controlled the released and induced charges through the intrinsic switching time. These results proved that antiferroelectric PZ thin films could be utilized in high-speed charge decoupling capacitors in microelectronics applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Niobium-modified lead zirconate stannate titanate antiferroelectric thin films with the chemical composition of (Pb0.99Nb0.02)(Zr0.57Sn0.38Ti0.05)0.98O3 were deposited by pulsed excimer laser ablation technique on Pt-coated Si substrates. Field-induced phase transition from antiferroelectric to ferroelectric properties was studied at different fields as a function of temperature. The field forced ferroelectric phase transition was elucidated by the presence of double-polarization hysteresis and double-butterfly characteristics from polarization versus applied electric field and capacitance and voltage measurements, respectively. The measured forward and reverse switching fields were 25 kV/cm and 77 kV/cm, respectively. The measured dielectric constant and dissipation factor were 540 and 0.001 at 100 kHz, respectively, at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have studied the effect of gate-drain/source overlap (LOV) on the drain channel noise and induced gate current noise (SIg) in 90 nm N-channel metal oxide semiconductor field effect transistors using process and device simulations. As the change in overlap affects the gate tunneling leakage current, its effect on shot noise component of SIg has been taken into consideration. It has been shown that “control over LOV” allows us to get better noise performance from the device, i.e., it allows us to reduce noise figure, for a given leakage current constraint. LOV in the range of 0–10 nm is recommended for the 90 nm gate length transistors, in order to get the best performance in radio frequency applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prebreakdown currents in a coaxial cylindrical geometry in nitrogen have been measured with and without a crossed magnetic field. The range of parameters used in the investigation are 2.6 ÿ p ÿ 14.5 torr, 50 ÿ (E/p) ÿ 420 V cm-1 torr-1, and 43.0 ÿ H/p ÿ 1185 Oe torr-1 (p is the pressure, E is the electric field, and H is the magnetic field). The initial photoelectric current is obtained by allowing photons produced in an auxiliary glow discharge to strike the cathode. Ions and electrons produced in the auxiliary discharge are prevented from reaching the main gap by suitable shielding. By modifying the Rice equation for back diffusion, the measured ionization current multiplication without a crossed magnetic field is compared with the multiplication predicted by the Townsend growth equation for nonuniform electric fields. It is observed that over the range of 50 Ã�¿ (E/P)max Ã�¿ 250 [(E/P)max is the value of E/p at the central electrode of the coaxial system] measured and calculated multiplication of current agree with each other. With a crossed magnetic field the prebreakdown currents have been measured and compared with the theoretically calculated currents using the equivalent pressure concept. Agreement between the calculated and measured currents is not satisfactory, and this has been attributed more to the uncertainty in the collision frequency data available than nonuniformity of the electric field. Sparking potentials have been measured with and without a crossed magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the simulation of a control scheme using the principle of field orientation for the control of a voltage source inverter-fed induction motor. The control principle is explained, followed by an algorithm to simulate various components of the system in the digital computer. The dynamic response of the system for the load disturbance and set-point variations have been studied. Also, the results of the simulation showing the behavior of field coordinates for such disturbances are given.