298 resultados para Electron donor strength
Resumo:
The molecular structure of trichloroacetonitrile has been studied by electron diffraction by the visual interpretation of sectored photographs. These parameters were obtained: C-N = 1.165 ± 0.025, C-C = 1.465 ± 0.025, C-Cl = 1.765 ± 0.01 A., and < CCCl = 109.5 ± 1°.
Resumo:
In this work diketopyrrolopyrrole based copolymers (PDPP-BBT and TDPP-BBT) containing a donor-acceptor structural unit have been explored as organic Sensitizers for quasi-solid state dye Sensitized solar cells. Polymer-sensitized solar cells (PSSC) fabricated utilizing PDPP-BBT and TDPP-BBT as the active layer resulted in a typical power conversion efficiency of 1.43% and 2.41%, respectively. The power conversion efficiency of PSSCs based on TDPP-BBT With use of TiCl4-modified TiO2 photoanode was about 3.06%, attributed to the reduced back recombination reaction and more charge carriers in the external Circuit.
Resumo:
A polymer containing electron-rich aromatic donors (1,5-dialkoxynaphthalene (DAN)) was coerced into a folded state by an external folding agent that contained an electron-deficient aromatic acceptor (pyromellitic diimide (PM)) unit. The donor-containing polymer was designed to carry a tertiary amine moiety in the linking segment, which served as an H-bonding site for reinforcing the interaction with the acceptor containing folding agent that also bore a carboxylic acid group. The H-bonding interaction of the carboxylic acid and the tertiary amine brings the PDI unit between two adjacent DAN units along the polymer backbone to induce charge-transfer (C-T) interactions, and this in turn causes the polymer chain to form a pleated structure. Evidence for the formation of such a pleated structure was obtained from NMR titration studies and also by monitoring the C-T band in their UV-visible spectra. By varying the length of the segment that links the PDI acceptor to the carboxylic acid group, we showed that the most effective folding agent was the one that had a single carbon spacer, as evident from the highest value of the association constant. Control experiments with propionic acid clearly demonstrated the importance of the additional C-T interactions for venerating the folded structures. Further, solution viscosity measurements in the presence of varying amounts of the folding agent revealed a gradual stiffening of the chain in the case of the PDI carrying carboxylic acid, whereas no such affect was seen in the case of simple propionic acid. These observations were supported by D FT calculations of the interactions of a dimeric model of the polymer with the various folding agents; here too the stability of the complex was seen to be highest in the case of the single carbon spacer.
Resumo:
We present a simplified theory of the effective momentum mass (EMM) and ballistic current–voltage relationship in a degenerate two-folded highly asymmetric bilayer graphene nanoribbon. With an increase in the gap, the density-of-states in the lower set of subbands increases more than that of the upper set. This results in a phenomenological population inversion of carriers, which is reflected through a net negative differential conductance (NDC). It is found that with the increase of the ribbon width, the NDC also increases. The population inversion also signatures negative values of EMM above a certain ribbon-width for the lower set of subbands, which increases in a step-like manner with the applied longitudinal static bias. The well-known result for symmetric conditions has been obtained as a special case.
Resumo:
Here the design and operation of a novel transmission electron microscope (TEM) triboprobe instrument with real-time vision control for advanced in situ electron microscopy is demonstrated. The NanoLAB triboprobe incorporates a new high stiffness coarse slider design for increased stability and positioning performance. This is linked with an advanced software control system which introduces both new and flexible in situ experimental functional testing modes, plus an automated vision control feedback system. This advancement in instrumentation design unlocks new possibilities of performing a range of new dynamical nanoscale materials tests, including novel friction and fatigue experiments inside the electron microscope.
Resumo:
We mention here an unusual disorder effect in manganites, namely the ubiquitous hopping behavior for electron transport observed in them over a wide range of doping. We argue that the implied Anderson localization is intrinsic to manganites, because of the existence of polarons in them which are spatially localized, generally at random sites (unless there is polaron ordering). We have developed a microscopic two fluid lb model for manganites, where l denotes lattice site localized l polarons, and b denotes band electrons. Using this, and the self-consistent theory of localization, we show that the occupied b states are Anderson localized in a large range of doping due to the scattering of b electrons from l polarons. Numerical simulations which further include the effect of long range Coulomb interactions support this, as well the existence of a novel polaronic Coulomb glass. A consequence is the inevitable hopping behaviour for electron transport observed in doped insulating manganites.
Resumo:
The force constants of H2 and Li2 are evaluated employing their extended Hartree-Fock wavefunctions by a polynomial fit of their force curves. It is suggested that, based on incomplete multiconfiguration Hartree-Fock wavefunctions, force constants calculated from the energy derivatives are numerically more accurate than those obtained from the derivatives of the Hellmann-Feynman forces. It is observed that electrons relax during the nuclear vibrations in such a fashion as to facilitate the nuclear motions.
Resumo:
It is shown that the mass of the electron could be conceived as the energy associated with its spinning motion and the angular velocity is such that the linear velocities at the surface exceed the velocity of light; this in fact accounts for its stability against the centrifugal forces in the core region.
Resumo:
Following the reaction matrix technique and the Kanamori approximation. a condition is obtained for the occurence of undamped Cooper pairs in a non-degenerate electron system. Its relevance to induced superconductivity in systems with artificially populated (optically pumped) bands is pointed out.
Resumo:
The mechanical properties of Al-Zn-Mg alloy reinforced with SiCP composites prepared by solidification route were studied by altering the matrix strength with different heat treatments. With respect to the control alloy, the composites have shown similar ageing behaviour in terms of microhardness data at 135 degrees C. It was shown that although composites exhibited enhanced modulus values, the strengthening was found to be dependent on the damage that is occurring during straining. Thus the initial matrix strength plays an important role in determining the strengthening. Consequently, compression data had shown a different trend compared to tension. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Rapid solidification of an equiatomic In-Se alloy resulted in the formation of an equilibrium InSe-In6Se7 phase mixture. The InSe phase was found to be polytypic and exhibited the structural variants 2H, 3H, and 4H. The 4H polytype was found to be in considerably higher proportion compared to 2H and 3H types. The In6Se7 phase was found to be hexagonal with a=0.8919 nm and c=1.4273 nm. Both In6Se 7 and the polytypes of InSe could be identified with the space group P61. The conductivity σ variation with temperature was found to be similar to that observed in disordered semiconducting materials. For temperatures >200 K, ln σ decreased linearly with T-1, phonon-assisted carrier excitation. For temperatures <200 K, ln σ decrease followed T-1/3 behavior, representative of variable-range hopping conduction of electrons.
Resumo:
The variety of electron diffraction patterns arising from the decagonal phase has been explored using a stereographic analysis for generating the important zone axes as intersection points corresponding to important relvectors. An indexing scheme employing a set of five vectors and an orthogonal vector has been followed. A systematic tilting from the decagonal axis to one of the twofold axes has been adopted to generate a set of experimental diffraction patterns corresponding to the expected patterns from the stereographic analysis with excellent agreement.
Resumo:
Energy loss spectra of superconducting YBa2Cu3O6.9' Bi1.5Pb0.5Ca2.5Sr1.5Cu3O10+δ and Tl2CaBa2Cu3O8 obtained at primary electron energies in the 170–310 eV range show features reflecting the commonalities in their electronic structures. The relative intensity of the plasmon peak shows a marked drop across the transition temperature. Secondary electron emission spectra of the cuprates also reveal some features of the electronic structure.