277 resultados para Cross reaction
Resumo:
The trans- and cis-stilbenes upon inclusion in NaY zeolite are thermally stable. Direct excitation and triplet sensitization results in geometric isomerization and the excited state behavior under these conditions are similar to that in solution. Upon direct excitation, a photostationary state consisting of 65% cis and 35% trans isomers is established. Triplet sensitization with 2-acetonaphthone gave a photostationary state consisting of 63% cis and 37% trans isomers. These numbers are similar to the ones obtained in solution. Thus, the presence of cations and the confined space within the zeolite have very little influence on the overall chemistry during direct and triplet sensitization. However, upon electron transfer sensitization with N-methylacridinium (NMA) as the sensitizer within NaY, isomerization from cis-stilbene radical cation to trans-stilbene occurs and the recombination of radical ions results in triplet stilbene. Prolonged irradiation gave a photostationary state (65% cis and 35% trans) similar to triplet sensitization. This behavior is unique to the zeolite and does not take place in solution. Steady state fluorescence measurements showed that the majority of stilbene molecules are close to the N-methylacridinium sensitizer. Diffuse reflectance flash photolysis studies established that independent of the isomer being sensitized only trans radical cation is formed. Triplet stilbene is believed to be generated via recombination of stilbene radical cation and sensitizer radical anion. One should be careful in using acidic HY zeolite as a medium for photoisomerization of stilbenes. In our hands, in these acidic zeolites isomerization dominated the photoisomerization. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Aspirin anion appears to exist only fleetingly, rearranging via acetyl transfer to the ortho carboxylate group, as indicated by IR, UV and NMR. The resulting mixed anhydride cyclises to the more stable bicyclic orthoacetate isomer, a process facilitated by time and increasing pH. Mechanistic possibilities are discussed to explain these intriguing observations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Investigation of the reaction of La2CuO4 with several binary metal oxides in the solid state at elevated temperatures has revealed three different reaction pathways. Reaction of La2CuO4 with strongly acidic oxides such as Re2O7, MoO3, and V2O5 follows a metathesis route, yielding a mixture of products: La3ReO8/La2MoO6/LaVO4 and CuO. Oxides such as TiO2, MnO2, and RuO2 which are not so acidic yield addition products: La2CuMO6 (M = Ti, Mn, Ru). SnO2 is a special case which appears to follow a metathesis route, giving La2Sn2O7 pyrochlore and CuO, which on prolonged reaction transform to the layered perovskite La2CuSnO6. The reaction of La2CuO4 with lower valence oxides VO2 and MoO2, on the other hand, follows a novel redox metathesis route, yielding a mixture of LaVO4/LaCuO2 and La2MoO6/Cu, respectively. This result indicates that it is the redox reactivity involving V-IV + Cu-II --> V-V + Cu-I and Mo-IV + Cu-II --> Mo-VI + Cu-0, and not the acidity of the binary oxide, that controls the nature of the products formed in these cases. The general significance of these results toward the synthesis of complex metal oxides containing several metal atoms is discussed.
Resumo:
The chemical composition of amorphous SiOx has been analyzed by oxidation studies and is found to be SiO1.7. SiO1.7 appears to be a monophasic amorphous material on the basis of 29Si nuclear magnetic resonance, high resolution electron microscopy, and comparative behavior of a physical mixture of Si and SiO2. Carbothermal reduction and nitridation reactions have been carried out on amorphous SiO1.7 and on amorphous SiO2 obtained from oxidation of SiO1.7. At 1623 K reactions of SiO1.7 lead exclusively to the formation of Si2N2O, while those of SiO2 lead exclusively to the formation of Si3N4. Formation of copious fibers of α-Si3N4 was observed in the latter reaction. It is suggested that the partial pressure of SiO in equilibrium with reduced SiO1.7 and SiO2 during the reaction is the crucial factor that determines the chemistry of the products. The differences in the structures of SiO2 and SiO1.7 have been considered to be the origin of the differences in the SiO partial pressures of the reduction products formed prior to nitridation. The effect of the ratios, C:SiO1.7 and C:SiO2, in the reaction mixture as well as the effect of the temperature on the course of the reactions have also been investigated.
Resumo:
Palladium and platinum dichloride complexes of a series of symmetrically and unsymmetrically substituted 25,26;27,28-dibridged p-tert-butyl-calix[4]arene bisphosphites in which two proximal phenolic oxygen atoms of p-tert-butyl-or p-H-calix[4]arene are connected to a P(OR) ( R = substituted phenyl) moiety have been synthesized. The palladium dichloride complexes of calix[4]arene bisphosphites bearing sterically bulky aryl substituents undergo cyclometalation by C-C or C-H bond scission. An example of cycloplatinated complex is also reported. The complexes have been characterized by NMR spectroscopic and single crystal X-ray diffraction studies. During crystallization of the palladium dichloride complex of a symmetrically substituted calix[4]arene bisphosphite in dichloromethane, insertion of oxygen occurs into the Pd-P bond to give a P,O-coordinated palladium dichloride complex. The calix[4]arene framework in these bisphosphites and their metal complexes adopt distorted cone conformation; the cone conformation is more flattened in the metal complexes than in the free calix[4]arene bisphosphites. Some of these cyclometalated complexes proved to be active catalysts for Heck and Suzuki C-C cross-coupling reactions but, on an average, the yields are only modest. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
An analysis of 503 available triosephosphate isomerase sequences revealed nine fully conserved residues. Of these, four residues-K12, H95, E97 and E165-are capable of proton transfer and are all arrayed around the dihydroxyacetone phosphate substrate in the three-dimensional structure. Specific roles have been assigned to the residues K12, H95 and E165, but the nature of the involvement of E97 has not been established. Kinetic and structural characterization is reported for the E97Q and E97D mutants of Plasmodium falciparum triosephosphate isomerase (Pf TIM). A 4000-fold reduction in k(cat) is observed for E97Q, whereas the E97D mutant shows a 100-fold reduction. The control mutant, E165A, which lacks the key catalytic base, shows an approximately 9000-fold drop in activity. The integrity of the overall fold and stability of the dimeric structure have been demonstrated by biophysical studies. Crystal structures of E97Q and E97D mutants have been determined at 2.0 angstrom resolution. In the case of the isosteric replacement of glutamic acid by glutamine in the E97Q mutant a large conformational change for the critical K12 side chain is observed, corresponding to a trans-to-gauche transition about the C gamma-C delta (chi(3)) bond. In the E97D mutant, the K12 side chain maintains the wild-type orientation, but the hydrogen bond between K12 and D97 is lost. The results are interpreted as a direct role for E97 in the catalytic proton transfer cycle. The proposed mechanism eliminates the need to invoke the formation of the energetically unfavourable imidazolate anion at H95, a key feature of the classical mechanism.
Resumo:
We compare the high energy behaviour of hadronic photon-photon cross-sections in different models. We find that the photon-photon cross-section appears to rise faster than the purely hadronic ones (proton-proton and proton-antiproton).
Resumo:
We describe a QCD motivated model for total cross-sections which uses the eikonal representation and incorporates QCD mini-jets to drive the rise with energy of the cross-section, while the impact parameter distribution is obtained through the Fourier transform of the transverse momentum distribution of soft gluons emitted in the parton-parton interactions giving rise to mini-jets in the final state. A singular but integral expression for the running coupling constant in the infrared region is part of this model.
Resumo:
In this contribution, we discuss a total cross-section model which can be applied to both photon and purely hadronic processes. We find that the model can reproduce photo-production cross-sections, as well as extrapolations of gamma p processes to gamma p using vector meson dominance models, with minimal modifications from the proton case.