282 resultados para Charge sensitive preamplifier
Resumo:
We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.
Resumo:
The primary purpose of the present work was to illustrate whether cell proliferation can be enhanced on electroactive bioceramic composite, when the cells are cultured in the presence of external electrical stimulation. The two different aspects of the influence of electric field (E-field) application toward stimulating the growth/proliferation of bone/connective tissue cells in vitro, (a) intermittent delivery of extremely low strength pulsed electrical stimulation (0.5-4V/cm, 400s DC pulse) and (b) surface charge generated by electrical poling (10kV/cm) of hydroxyapatite (HA)-BaTiO3 piezobiocomposite have been demonstrated. The experimental results establish that the cell growth can be enhanced using the new culture protocol of the intermittent delivery of electrical pulses within a narrow range of stimulation parameters. The optimal E-field strength for enhanced cellular response for mouse fibroblast L929 and osteogenic cells is in the range of 0.5-1V/cm. The MTT 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay results suggested the increased viability of E-field treated cells over 7d in culture, implicating the positive impact of electrical pulses on proliferation behavior. The alizarin red assay results showed noticeable increase in Ca-deposition on the E-field treated samples in comparison to their untreated counterparts. The negatively charged surfaces of developed piezocomposite stimulated the cell growth in a statistically noticeable manner as compared with the uncharged or positively charged surfaces of similar composition.
Resumo:
Multi-walled carbon nanotube (MWCNT)-polyvinyl chloride (PVC) nanocomposites, with MWCNT loading up to 44.4 weight percent (wt%), were prepared by the solvent mixing and casting method. Electron microscopy indicates high degree of dispersion of MWCNT in PVC matrix, achieved by ultrasonication without using any surfactants. Thermogravimetric analysis showed a significant monotonic enhancement in the thermal stability of nanocomposites by increasing the wt% of MWCNT. Electrical conductivity of nanocomposites followed the classical percolation theory and the conductivity prominently improved from 10(-7) to 9 S/cm as the MWCNT loading increased from 0.1 to 44.4 wt%. Low value of electrical percolation threshold similar to 0.2 wt% is achieved which is attributed to high aspect ratio and homogeneous dispersion of MWCNT in PVC. The analysis of the low temperature electrical resistivity data shows that sample of 1.9 wt% follows three dimensional variable range hopping model whereas higher wt% nanocomposite samples follow power law behavior. The magnetization versus applied field data for both bulk MWCNTs and nanocomposite of 44.4 wt% display ferromagnetic behavior with enhanced coercivities of 1.82 and 1.27 kOe at 10 K, respectively. The enhancement in coercivity is due to strong dipolar interaction and shape anisotropy of rod-shaped iron nanoparticles. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We revisit the constraints on the parameter space of the Minimal Supersymmetric Standard Model (MSSM), from charge and color breaking minima in the light of information on the Higgs from the LHC so far. We study the behavior of the scalar potential keeping two light sfermion fields along with the Higgs in the pMSSM framework and analyze the stability of the vacuum. We find that for lightest stops a parts per thousand(2) 1 TeV and small mu a parts per thousand(2) 500 GeV, the absolute stability of the potential can be attained only for . The bounds become stronger for larger values of the mu parameter. Note that this is approximately the value of Xt which maximizes the Higgs mass. Our bounds on the low scale MSSM parameters are more stringent than those reported earlier in literature. We reanalyze the stau sector as well, keeping both staus. We study the connections between the observed Higgs rates and vacuum (meta)stability. We show how a precision study of the ratio of signal strengths, (mu (gamma gamma) /mu (ZZ) ) can shed further light.
Resumo:
Chemical functionalization of various hydrocarbons, such as coronene, corannulene, and so forth, shows good promise in electronics applications because of their tunable optoelectronic properties. By using quantum chemical calculations, we have investigated the changes in the corannulene buckybowl structure, which greatly affect its electronic and optical properties when functionalized with different electron-withdrawing imide groups. We find that the chemical nature and position of functional groups strongly regulate the stacking geometry, -stacking interactions, and electronic structure. Herein, a range of optoelectronic properties and structure-property relationships of various imide-functionalized corannulenes are explored and rationalized in detail. In terms of carrier mobility, we find that the functionalization strongly affects the reorganization energy of corannulene, while the enhanced stacking improves hopping integrals, favoring the carrier mobility of crystals of pentafluorophenylcorannulene-5-monoimide. The study shows a host of emerging optoelectronic properties and enhancements in the charge-transport characteristics of functionalized corannulene, which may find possible semiconductor and electronics applications.
Resumo:
This work assesses the performance of small biogas-fuelled engines and explores high-efficiency strategies for power generation in the very low power range of less than 1000 W. Experiments were performed on a small 95-cc, single-cylinder, four-stroke spark-ignition engine operating on biogas. The engine was operated in two modes, i.e., `premixed' and `fuel injection' modes, using both single and dual spark plug configurations. Measurements of in-cylinder pressure, crank angle, brake power, air and fuel flow rates, and exhaust emissions were conducted. Cycle-to-cycle variations in engine in-cylinder pressure and power were also studied and assessed quantitatively for various loading conditions. Results suggest that biogas combustion can be fairly sensitive to the ignition strategies thereby affecting the power output and efficiency. Further, results indicate that continuous fuel injection shows superior performance compared to the premixed case especially at low loads owing to possible charge stratification in the engine cylinder. Overall, this study has demonstrated for the first time that a combination of technologies such as lean burn, fuel injection, and dual spark plug ignition can provide highly efficient and stable operation in a biogas-fuelled small S.I. engine, especially in the low power range of 450-1000W. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
A systematic study of six tetracyclones has been carried out using experimental and theoretical charge density analysis. A three pronged approach based on quantum theory of atoms in molecules (QTAIM), nucleus independent chemical shifts (NICS) criterion, and source function (SF) contributions has been performed to establish the degree of antiaromaticity of the central five-membered ring in all the derivatives. Electrostatic potentials mapped on the isodensity surface show that electron withdrawing substituents turn both C and O atoms of the carbonyl group more electropositive while retaining the direction of polarity.
Resumo:
We employ an exact solution of the simplest model for pump-probe time-resolved photoemission spectroscopy in charge-density-wave systems to show how, in nonequilibrium, the gap in the density of states disappears while the charge density remains modulated, and then the gap reforms after the pulse has passed. This nonequilibrium scenario qualitatively describes the common short-time experimental features in TaS2 and TbTe3, indicating a quasiuniversality for nonequilibrium ``melting'' with qualitative features that can be easily understood within a simple picture.
Resumo:
An experimental charge-density analysis of pyrazinamide (a first line antitubercular drug) was performed using high-resolution X-ray diffraction data (sin theta/lambda)(max) = 1.1 angstrom(-1)] measured at 100 (2) K. The structure was solved by direct methods using SHELXS97 and refined by SHELXL97. The total electron density of the pyrazinamide molecule was modeled using the Hansen-Coppens multipole formalism implemented in the XD software. The topological properties of electron density determined from the experiment were compared with the theoretical results obtained from CRYSTAL09 at the B3LYP/6-31G** level of theory. The crystal structure was stabilized by N-H center dot center dot center dot N and N-H center dot center dot center dot O hydrogen bonds, in which the N3-H3B center dot center dot center dot N1 and N3-H3A center dot center dot center dot O1 interactions form two types of dimers in the crystal. Hirshfeld surface analysis was carried out to analyze the intermolecular interactions. The fingerprint plot reveals that the N center dot center dot center dot H and O center dot center dot center dot H hydrogen-bonding interactions contribute 26.1 and 18.4%, respectively, of the total Hirshfeld surface. The lattice energy of the molecule was calculated using density functional theory (B3LYP) methods with the 6-31G** basis set. The molecular electrostatic potential of the pyrazinamide molecule exhibits extended electronegative regions around O1, N1 and N2. The existence of a negative electrostatic potential (ESP) region just above the upper and lower surfaces of the pyrazine ring confirm the pi-electron cloud.
Resumo:
Using the numerical device simulation we show that the relationship between the surface potentials along the channel in any double gate (DG) MOSFET remains invariant in QS (quasistatic) and NQS (nonquasi-static) condition for the same terminal voltages. This concept along with the recently proposed `piecewise charge linearization' technique is then used to develop the intrinsic NQS charge model for a Independent DG (IDG) MOSFET by solving the governing continuity equation. It is also demonstrated that unlike the usual MOSFET transcapacitances, the inter-gate transcapacitance of a IDG-MOSFET initially increases with the frequency and then saturates, which might find novel analog circuit application. The proposed NQS model shows good agreement with numerical device simulations and appears to be useful for efficient circuit simulation.
Resumo:
Nanosized cerium and nitrogen co-doped TiO2 (Ce-TiO2-xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N-2 adsorption and desorption methods, photoluminescence and ultraviolet-visible (UV-vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in -3 state in Ce-TiO2-xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce-O-Ti interface and also inhibits Ce particles from sintering. UV-visible DRS studies show that the metal-metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ -> Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron-hole pair separation between the two interfaces Ce-TiO2-xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce-TiO2-xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce-TiO2-xNx was due to the participation of MMCT and interfacial charge transfer mechanism.
Resumo:
Diketopyrrolopyrrole (DPP)-based pi-conjugated copolymers with thiophene have exceptionally high electron mobilities. This paper investigates electronic properties and charge carrier mobilities of selenophene containing analogues. Two new copolymers, with alternating thiophene DPP (TDPP) and selenophene DPP (SeDPP) units, were synthesized. Two side-chains, hexyl (Hex) and triethylene glycol (TEG) were employed, yielding polymers designated as PTDPPSeDPP-Hex and PTDPPSeDPP-TEG. Selenophene systems have smaller band gaps, with concomitant enhancement of the stability of the reduced state. For both polymers, ambipolar mobilities were observed in organic field-effect transistors (OFET). Grazing incidence X-ray diffraction (GIXD) data indicates preferential edge-on orientation of PTDPPSeDPP-TEG, which leads to superior charge transport properties of the TEG substituted polymer, as compared to its Hex analogue. Time-dependent-density functional theory (TDDFT) calculations corroborate the decrease in the optical band gap with the inclusion of selenophene. Ambipolar charge transport is rationalized by exceptionally wide conduction bands. Delta SCF calculations confirm the larger electron affinity, and therefore the greater stability, of the reduced form of the selenophene-containing DPP polymer in presence of chloroform.
Resumo:
Precise pointer analysis is a problem of interest to both the compiler and the program verification community. Flow-sensitivity is an important dimension of pointer analysis that affects the precision of the final result computed. Scaling flow-sensitive pointer analysis to millions of lines of code is a major challenge. Recently, staged flow-sensitive pointer analysis has been proposed, which exploits a sparse representation of program code created by staged analysis. In this paper we formulate the staged flow-sensitive pointer analysis as a graph-rewriting problem. Graph-rewriting has already been used for flow-insensitive analysis. However, formulating flow-sensitive pointer analysis as a graph-rewriting problem adds additional challenges due to the nature of flow-sensitivity. We implement our parallel algorithm using Intel Threading Building Blocks and demonstrate considerable scaling (upto 2.6x) for 8 threads on a set of 10 benchmarks. Compared to the sequential implementation of staged flow-sensitive analysis, a single threaded execution of our implementation performs better in 8 of the benchmarks.
Resumo:
Temperature sensitive (Ts) mutants of proteins provide experimentalists with a powerful and reversible way of conditionally expressing genes. The technique has been widely used in determining the role of gene and gene products in several cellular processes. Traditionally, Ts mutants are generated by random mutagenesis and then selected though laborious large-scale screening. Our web server, TSpred (http://mspc.bii.a-star.edu.sg/TSpred/), now enables users to rationally design Ts mutants for their proteins of interest. TSpred uses hydrophobicity and hydrophobic moment, deduced from primary sequence and residue depth, inferred from 3D structures to predict/identify buried hydrophobic residues. Mutating these residues leads to the creation of Ts mutants. Our method has been experimentally validated in 36 positions in six different proteins. It is an attractive proposition for Ts mutant engineering as it proposes a small number of mutations and with high precision. The accompanying web server is simple and intuitive to use and can handle proteins and protein complexes of different sizes.