246 resultados para Cadmium alloys
Resumo:
Aiming to develop high mechanical strength and toughness by tuning ultrafine lamellar spacing of magnetic eutectic alloys, we report the mechanical and magnetic properties of the binary eutectic alloys Co90.5Zr9.5 and Fe90.2Zr9.8, as well as the pseudo-binary eutectic alloys Co82.4Fe8Zr9.6, Co78Fe12.4Zr9.6 and Co49.2Fe49.2Zr9.6 developed by suction-casting. The lower lamellar spacing around 100 nm of the eutectics Co49.2Fe49.2Zr9.6 yields a high hardness of 713(+/- 20) VHN. Magnetic measurements reveal high magnetic moment of 1.92 mu B (at 5 K) and 1.82 mu B (at 300 K) per formula unit for this composition. The magnetization vs. applied field data at 5 K show a directional preference to some extent and therefore smaller non-collinear magnetization behavior compared to Co11Zr2 reported in the literature due to exchange frustration and transverse spin freezing owing to the presence of smaller Zr content. The decay of magnetization as a function of temperature along the easy axis of magnetization of all the eutectic compositions can be described fairly well by the spin wave excitation equation Delta M/M(0) = BT3/2 + CT5/2. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Few-layer transition metal dichalcogenide alloys based on molybdenum sulphoselenides MoS2(1-x)Se2x] possess higher hydrogen evolution (HER) activity compared to pristine few-layer MoS2 and MoSe2. Variation of the sulphur or selenium content in the parent dichalcogenides reveals a systematic structure-activity relationship for different compositions of alloys, and it is found that the composition MoS1.0Se1.0 shows the highest HER activity amongst the catalysts studied. The tunable electronic structure of MoS2/MoSe2 upon Se/S incorporation probably assists in the realization of high HER activity.
Resumo:
The development of high-strength aluminum alloys that can operate at 250 degrees C and beyond remains a challenge to the materials community. In this paper we report preliminary development of nanostructural Al-Cu-Ni ternary alloys containing alpha-Al, binary Al2Cu and ternary Al2Cu4Ni intermetallics. The alloys exhibits fracture strength of similar to 1 GPa with similar to 9% fracture strain at room temperature. At 300 degrees C, the alloy retains the high strength. The reasons for such significant mechanical properties are rationalized by unraveling the roles and response of various microstructural features. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The influence of absorbed hydrogen on the mechanical behavior of a series of Ni-Nb-Zr amorphous metallic ribbons was investigated through nanoindentation experiments. It was revealed that the influence is significantly dependent on Zr content, that is, hydrogen induced softening in relatively low-Zr alloys, whereas hydrogen induced hardening in high-Zr alloys. The results are discussed in terms of the different roles of mobile and immobile hydrogen in the plastic deformation. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150 degrees C and then to a stable hexagonal structure at high temperatures (>= 250 degrees C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)(1-x)Se-x thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150 degrees C. The intermediate NaCl structure has been observed only for x, 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)(1-x)Se-x films are better candidates for phase change memory applications.
Resumo:
We describe a group of alloys with ultrahigh strength of about 2 GPa at 700 degrees C and exceptional oxidation resistance to 1100 degrees C. These alloys exploit intermetallic phases with stable oxide forming elements that combine to form fine nanometric scale structures through eutectic transformations in ternary systems. The alloys offer engineering tensile plasticity of about 4% at room temperature though both conventional dislocation mechanisms and twinning in the more complex intermetallic constituent, along with slip lengths that are restricted by the interphase boundaries in the eutectics.
Resumo:
Xanthine oxidase (XOD) extracted from bovine milk was immobilized covalently via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto cadmium oxide nanoparticles (CdO)/carboxylated multiwalled carbon nanotube (c-MWCNT) composite film electrodeposited on the surface of an Au electrode. The nanocomposite modified Au electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. Under optimal operation conditions (25 degrees C, + 0.2 V vs. Ag/AgCl, sodium phosphate buffer, pH 7.5), the following characteristics are attributed to the biosensor: linearity of response up to xanthine concentrations of 120 mu M, detection limit of 0.05 mu M (S/N = 3) and a response time of at most 4 s. After being used 100 times over a period of 120 days, only 50% loss of the initial activity of the biosensor was evaluated when stored at 4 degrees C. The fabricated biosensor was successfully employed for the determination of xanthine in fish meat.
Resumo:
Lead tin telluride is one of the well-established thermoelectric materials in the temperature range 350-750 K. In the present study, Pb0.75-xMnxSn0.25Te1.00 alloys with variable manganese (Mn) content were prepared by solid state synthesis and the thermoelectric properties were studied. X-ray diffraction, (XRD) showed that the samples followed Vegard's law, indicating solid solution formation and substitution of Mn at the Pb site. Scanning Electron Microscopy (SEM) showed that the grain sizes varied from <1 mu m to more than 10 mu m and MnTe rich phase was present for higher Mn content. Seebeck coefficient, electrical resistivity and thermal conductivity were measured from room temperature to 720 K. At 300 K, large Seebeck values were obtained, possibly due to increased effective mass on Mn substitution and low carrier concentration of the samples. At higher temperatures, transition from n-type to p-type indicated the presence of thermally generated carriers. Temperature dependent electrical resistivity showed the transition from degenerate to non-degenerate behavior. For thermal conductivity, low values (similar to 1 W/m-K at 300 K) were obtained. At higher temperatures bipolar conduction was observed, in agreement with the Seebeck and resistivity data. Due to low power factor, the maximum thermoelectric figure of merit (zT) was limited to 0.23 at 329 K for the sample with lowest Mn content (x=0.03). (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In the current study, correlation of microstructure evolution with bulk crystallographic texture formation during friction stir processing (FSP) of commercial aluminum alloys has been attempted. Electron back-scattered diffraction and X-ray diffraction techniques were employed for characterizing the nugget zone of optimum friction stir processed samples. Volume fraction of measured texture components revealed that the texture formation in aluminum alloys is similar irrespective of the alloy composition. Recrystallization behavior during FSP was more of a composition dependent phenomenon.
Resumo:
This paper describes the evolution of crystallographic texture in three of the most important high strength aluminium alloys, viz., AA2219, AA7075 and AFNOR7020 in the cold rolled and artificially aged condition. Bulk texture results were obtained by plotting pole figures from X-ray diffraction results followed by Orientation Distribution Function (ODF) analysis and micro-textures were measured using EBSD. The results indicate that the deformation texture components Cu, Bs and S, which were also present in the starting materials, strengthen with increase in amount of deformation. On the other hand, recrystallization texture components Goss and Cube weaken. The Bs component is stronger in the deformation texture. This is attributed to the shear banding. In-service applications indicate that the as-processed AFNOR7020 alloy fails more frequently compared to the other high strength Al alloys used in the aerospace industry. Detailed study of deformation texture revealed that strong Brass (Bs) component could be associated to shear banding, which in turn could explain the frequent failures in AFNOR7020 alloy. The alloying elements in this alloy that could possibly influence the stacking fault energy of the material could be accounted for the strong Bs component in the texture.
Resumo:
Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.
Resumo:
In this work, Mode-I fracture experiments are conducted using notched compact tension specimens machined from a rolled AZ31 Mg alloy plate having near-basal texture with load applied along rolling direction (RD) and transverse direction (TD). Moderately high notched fracture toughness of J(C) similar to 46 N/mm is obtained in both RD and TD specimens. Fracture surface shows crack tunneling at specimen mid-thickness and extensive shear lips near the free surface. Dimples are observed from SEM fractographs suggesting ductile fracture. EBSD analysis shows profuse tensile twinning in the ligament ahead of the notch. It is shown that tensile twinning plays a dual role in enhancing the toughness in the notched fracture specimens with reduced triaxiality. It provides significant dissipation in the background plastic zone and imparts hardening to the material surrounding the fracture process zone via operation of several mechanisms which retards micro-void growth and coalescence. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The present paper reports a new class of Co based superalloys that has gamma-gamma' microstructure and exhibits much lower density compared to other commercially available Co superalloys including Co-Al-W based alloys. The basic composition is Co-10Al-5Mo (at%) with addition of 2 at% Ta for stabilization of gamma' phase. The gamma-gamma' microstructure evolves through solutionising and aging treatment. Using first principles calculations, we observe that Ta plays a crucial role in stabilizing gamma' phase. By addition of Ta in the basic stoichiometric composition Co-3(Al, Mo), the enthalpy of formation (Delta H-f) of L1(2) structure (gamma' phase) becomes more negative in comparison to DO19 structure. The All of the L12 structure becomes further more negative by the occupancy of Ni and Ti atoms in the lattice suggesting an increase in the stability of the gamma' precipitates. Among large number of alloys studied experimentally, the paper presents results of detailed investigations on Co-10Al-5Mo-2Ta, Co-30Ni-10Al-5Mo-2Ta and Co-30Ni-10Al-5Mo-2Ta-2Ti. To evaluate the role alloying elements, atom probe tomography investigations were carried out to obtain partition coefficients for the constituent elements. The results show strong partitioning of Ni, Al, Ta and Ti in ordered gamma' precipitates. 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The first examples of organic alloys of two room temperature liquids, obtained and characterized via in situ cryo-crystallography, are presented. Thiophenol and selenophenol, which exhibit isostructurality and similar modes of S center dot center dot center dot S and Se center dot center dot center dot Se homo-chalcogen interactions along with weak and rare S-H center dot center dot center dot S and Se-H center dot center dot center dot Se hydrogen bonds, are shown to form solid solutions exhibiting Veggard's law-like trends.
Resumo:
Eutectic growth offers a variety of examples for pattern formation which are interesting both for theoreticians as well as experimentalists. One such example of patterns is ternary eutectic colonies which arise as a result of instabilities during growth of two solid phases. Here, in addition to the two major components being exchanged between the solid phases during eutectic growth, there is an impurity component which is rejected by both solid phases. During progress of solidification, there develops a boundary layer of the third impurity component ahead of the solidification front of the two solid phases. Similar to Mullins-Sekerka type instabilities, such a boundary layer tends to make the global solidification envelope unstable to morphological perturbations giving rise to two-phase cells. This phenomenon has been studied numerically in two dimensions for the conditions of directional solidification, by Plapp and Karma (Phys Rev E 66:061608, 2002) using phase-field simulations. While, in the work by Plapp and Karma (Phys Rev E 66:061608, 2002) all interfaces are isotropic, in our presentation, we extend the phase-field model by considering interfacial anisotropy in the solid-solid and solid-liquid interfaces and characterize the role of interfacial anisotropy on the stability of the growth front through phase-field simulations in two dimensions.