230 resultados para Atomistic Simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several mathematical models are available for estimation of effective thermal conductivity of nonreactive packed beds. Keeping in view the salient differences between metal hydride beds in which chemisorption of hydrogen takes place and conventional nonreactive packed beds, modified models are proposed here to predict the effective thermal conductivity. Variation in properties such as solid thermal conductivity and porosity during hydrogen absorption and desorption processes are incorporated. These extended models have been applied to simulate the effective thermal conductivity of the MmNi(4.5)Al(0.5) hydride bed and are compared with the experimental results. Applicability of the extended models for estimation of the effective thermal conductivity at different operating conditions such as pressure, temperature, and hydrogen concentration is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The serotonin(1A) receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and is a potential drug target in neuropsychiatric disorders. The receptor has been shown to require membrane cholesterol for its organization, dynamics and function. Although recent work suggests a close interaction of cholesterol with the receptor, the structural integrity of the serotonin(1A) receptor in the presence of cholesterol has not been explored. In this work, we have carried out all atom molecular dynamics simulations, totaling to 3s, to analyze the effect of cholesterol on the structure and dynamics of the serotonin(1A) receptor. Our results show that the presence of physiologically relevant concentration of membrane cholesterol alters conformational dynamics of the serotonin(1A) receptor and, on an average lowers conformational fluctuations. Our results show that, in general, transmembrane helix VII is most affected by the absence of membrane cholesterol. These results are in overall agreement with experimental data showing enhancement of GPCR stability in the presence of membrane cholesterol. Our results constitute a molecular level understanding of GPCR-cholesterol interaction, and represent an important step in our overall understanding of GPCR function in health and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Guanine Monophosphate Synthetase (hGMPS) converts XMP to GMP, and acts as a bifunctional enzyme with N-terminal ``glutaminase'' (GAT) and C-terminal ``synthetase'' domain. The enzyme is identified as a potential target for anticancer and immunosuppressive therapies. GAT domain of enzyme plays central role in metabolism, and contains conserved catalytic residues Cys104, His190, and Glu192. MD simulation studies on GAT domain suggest that position of oxyanion in unliganded conformation is occupied by one conserved water molecule (W1), which also stabilizes that pocket. This position is occupied by a negatively charged atom of the substrate or ligand in ligand bound crystal structures. In fact, MD simulation study of Ser75 to Val indicates that W1 conserved water molecule is stabilized by Ser75, while Thr152, and His190 also act as anchor residues to maintain appropriate architecture of oxyanion pocket through water mediated H-bond interactions. Possibly, four conserved water molecules stabilize oxyanion hole in unliganded state, but they vacate these positions when the enzyme (hGMPS)-substrate complex is formed. Thus this study not only reveals functionally important role of conserved water molecules in GAT domain, but also highlights essential role of other non-catalytic residues such as Ser75 and Thr152 in this enzymatic domain. The results from this computational study could be of interest to experimental community and provide a testable hypothesis for experimental validation. Conserved sites of water molecules near and at oxyanion hole highlight structural importance of water molecules and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In gross motion of flexible one-dimensional (1D) objects such as cables, ropes, chains, ribbons and hair, the assumption of constant length is realistic and reasonable. The motion of the object also appears more natural if the motion or disturbance given at one end attenuates along the length of the object. In an earlier work, variational calculus was used to derive natural and length-preserving transformation of planar and spatial curves and implemented for flexible 1D objects discretized with a large number of straight segments. This paper proposes a novel idea to reduce computational effort and enable real-time and realistic simulation of the motion of flexible 1D objects. The key idea is to represent the flexible 1D object as a spline and move the underlying control polygon with much smaller number of segments. To preserve the length of the curve to within a prescribed tolerance as the control polygon is moved, the control polygon is adaptively modified by subdivision and merging. New theoretical results relating the length of the curve and the angle between the adjacent segments of the control polygon are derived for quadratic and cubic splines. Depending on the prescribed tolerance on length error, the theoretical results are used to obtain threshold angles for subdivision and merging. Simulation results for arbitrarily chosen planar and spatial curves whose one end is subjected to generic input motions are provided to illustrate the approach. (C) 2016 Elsevier Ltd. All rights reserved.