567 resultados para oméga-3
Resumo:
In the title compound, C19H21Cl2NO4, the dihydropyridine ring adopts a flattened boat conformation. The dichlorophenyl ring is oriented almost perpendicular to the planar part of the dihydropyridine ring [dihedral angle = 89.1 (1)degrees]. An intramolecular C-H center dot center dot center dot O hydrogen bond is observed. In the crystal structure, molecules are linked into chains along the b axis by N-H center dot center dot center dot O hydrogen bonds.
Resumo:
The title compound, C25H19N3, is composed of an aryl-substituted pyrazole ring connected to an aryl-substituted isoquinoline ring system with a dihedral angle of 52.7 (1)degrees between the pyrazole ring and the isoquinoline ring system. The dihedral angle between the pyrazole ring and the phenyl ring attached to it is 27.4 (1)degrees and the dihedral angle between the isoquinoline ring system and the phenyl ring attached to it is 19.6 (1)degrees.
Resumo:
In the title molecule, C20H13N3S, the triazoloisoquinoline ring system is approximately planar, with an r.m.s. deviation of 0.045 angstrom and a maximum deviation of 0.090 (2) angstrom from the mean plane for the triazole ring C atom which is bonded to the thiophene ring. The phenyl ring is twisted by 52.0 (1)degrees with respect to the mean plane of the triazoloisoquinoline ring system. The thiophene ring is rotationally disordered by approximately 180 degrees over two sites, the ratio of refined occupancies being 0.73 (1): 0.27 (1).
Resumo:
1,3-Propanediol dehydrogenase is an enzyme that catalyzes the oxidation of 1,3-propanediol to 3-hydroxypropanal with the simultaneous reduction of NADP(+) to NADPH. SeMet-labelled 1,3-propanediol dehydrogenase protein from the hyperthermophilic bacterium Aquifex aeolicus VF5 was overexpressed in Escherichia coli and purified to homogeneity. Crystals of this protein were grown from an acidic buffer with ammonium sulfate as the precipitant. Single-wavelength data were collected at the selenium peak to a resolution of 2.4 angstrom. The crystal belonged to space group P3(2), with unit-cell parameters a = b = 142.19, c = 123.34 angstrom. The structure contained two dimers in the asymmetric unit and was solved by the MR-SAD approach.
Resumo:
The title compound, C15H8Cl2N2O2S, crystallizes with two molecules in the asymmetric unit. The dihedral angles between the 4-chloro-3-nitrophenyl ring and the thiazole ring are 0.5 (1) and 7.1 (1)° and those between the 4-chlorophenyl ring and the thiazole ring are 7.1 (1) and 7.4 (1)° in the two molecules. The crystal structure is stabilized by intermolecular C-H...Cl and C-H...O hydrogen bonds.
Resumo:
The title compound, C24H24N2O3S, exhibits antifungal and antibacterial properties. The compound crystallizes with two molecules in the asymmetric unit, with one molecule exhibiting 'orientational disorder' in the crystal structure with respect to the cyclohexene ring. The o-toluidine groups in both molecules are noncoplanar with the respective cyclohexene-fused thiophene ring. In both molecules, there is an intramolecular N-H...N hydrogen bond forming a pseudo-six-membered ring which locks the molecular conformation and eliminates conformational flexibility. The crystal structure is stabilized by O-H...O hydrogen bonds; both molecules in the asymmetric unit form independent chains, each such chain consisting of alternating 'ordered' and 'disordered' molecules in the crystal lattice.
Resumo:
In the molecule of the title compound, C20H23NO3, the bulky methoxyphenyl substituents at the equatorial 2,6-positions crowd the vicinity of the equatorial amino H atom and prevent it from forming intermolecular hydrogen bonds. The piperidine ring adopts a distorted chair conformation.
Resumo:
The quinolinyl fused-ring of the title compound, C11H8ClNO, is almost planar (r.m.s. deviation = 0.013 Å); the formyl group is slightly bent out of the plane of the fused ring system [C-C-C-O torsion angle = 13.5 (4)°].
Resumo:
The quinoline fused-ring system of the title compound, C11H8ClNO, is planar (r.m.s. deviation = 0.005 Å); the formyl group is slightly bent out of the plane [C-C-C-O1 torsion angles = 8.8 (7) and -172.8 (4)°].
Resumo:
A kinetic study of the tumor-associated galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-d-galactopyranoside (T-antigen) with lectin peanut agglutinin is described. The disaccharide antigen was synthesized by chemical methods and was functionalized suitably for immobilization onto a carboxy-methylated sensor chip. The ligand immobilized surface was allowed interaction with the lectin peanut agglutinin, which acted as the analyte and the interaction was studied by the surface plasmon resonance method. The ligand—lectin interaction was characterized by the kinetic on-off rates and a bivalent analyte binding model was found to describe the observed kinetic constants. It was identified that the antigen-lectin interaction had a faster association rate constant (k a1) and a slower dissociation rate constant (k d1) in the initial binding step. The subsequent binding step showed much reduced kinetic rates. The antigen-lectin interaction was compared with the kinetic rates of the interaction of a galactopyranosyl-(1→4)-β-d-galactopyranoside derivative and a mannopyranoside derivative with the lectin.
Resumo:
Crystal structure determination at room temperature [292 (2) K] of racemic 1,1'-binaphthalene-2,2'-diyl diethyl bis(carbonate), C26H22O6, showed that one of the terminal carbon-carbon bond lengths is very short [Csp(3)-Csp(3) = 1.327 (6) angstrom]. The reason for such a short bond length has been analysed by collecting data sets on the same crystal at 393, 150 and 90 K. The values of the corrected bond lengths clearly suggest that the shortening is mainly due to positional disorder at two sites, with minor perturbations arising as a result of thermal vibrations. The positional disorder has been resolved in the analysis of the 90 K data following the changes in the unit-cell parameters for the data sets at 150 and 90 K, which appear to be an artifact of a near centre of symmetry relationship between the two independent molecules in the space group P (1) over bar at these temperatures. Indeed, the unit cell at low temperature (150 and 90 K) is a supercell of the room-temperature unit cell.
Resumo:
4-Bromomethylcoumarins (1) reacted with sodium azide in aqueous acetone to give 4-azidomethyl-coumarins (2), which underwent 1,3-dipolar cycloaddition with acetylenic dipolarophiles to give triazoles (3). These triazoles (3) have been found to exhibit interesting variations in the chemical shifts of C-3-H and C-4-methylene protons. Protonation studies indicate that the shielding effect of the C-3-H of coumarin is due to pi-electrons of the triazole ring, further supported by diffraction and computational studies.
Resumo:
In the title compound, C19H16ClNO2, the quinoline ring system is planar (r.m.s. deviation = 0.008 angstrom). The phenyl group and the -CO2 fragment of the ester unit form dihedral angles of 60.0 (1) and 60.5 (1)degrees, respectively, with the quinoline ring system.
Resumo:
Conjugated polymers are promising materials for electrochromic device technology. Aqueous dispersions of poly(3,4-ethylenedioxythiophene)-(PEDOT) were spin coated onto transparent conducting oxide (TCO) coated glass substrates. A seven-layer electrochromic device was fabricated with the following configuration: glass/transparent conducting oxide (TCO)/PEDOT (main electrochromic layer)/gel electrolyte/prussian blue (counter electrode)/TCO/glass. The device fabricated with counter electrode (Prussian blue) showed a contrast of 18% and without counter electrode showed visible contrast of 5% at 632 nm at a voltage of 1.9 V. The comparison of the device is done in terms of the colouration efficiency of the devices with and without counter electrode.
Resumo:
The occurrence of concomitant polymorphism in 3-fluoro-N-(3-fluorophenyl) benzamide has been identified to be due to the disorder in the crystal structure. Of the two modifications, the plate form (Form I) crystallizes in the monoclinic centrosymmetric space group C2/c with Z = 4, and the needle form (Form II) crystallizes in the noncentrosymmetric space group P21 with Z = 2. An interesting positional disorder at the bridging atoms in both forms holds the molecular conformation identical, while subtle variations brought by N−H···O hydrogen bonds along with weak C−H···F and F···F interactions result in packing polymorphism.