262 resultados para methanol solutions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we present a colorimetric detection method for Cr (VI) in aqueous solution based on as synthesized silver nanoparticles (Ag NPs) without surface functionalization. The method principle involves reduction of Cr (VI) to Cr (III) by excess reductant present in as synthesized Ag NP dispersion, and subsequent aggregation of Ag NPs by Cr (III) leading to red-shift of the surface plasmon resonance (SPR) peak. The UV-vis absorption spectra. Zeta potentials, dynamic light scattering measurements, and scanning electron microscopy (SEM) confirmed the aggregation of the Ag NPs. Under the optimized conditions, a good linear relationship (correlation coefficient r=0.981) was obtained between the ratio of the absorbance at 550 nm to that at 390 nm (A(550/390)) and the concentration of Cr (VI) over the range of 10(-3)-10(-9) M 50 mg/L to 50 ng/L]. The reported probe has a limit of detection down to 1 nM, which, to the best of our knowledge, is the lowest ever reported for the colorimetric detection of Cr (VI). Furthermore, a remarkable feature of this method is that it involves a simple technique exhibiting high selectivity to Cr (VI) over other tested heavy metal ions. (C) 2012 Elsevier BM. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant ('a' and `c'), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 10(6) Omega-cm at higher temperature and 10(5) Omega-cm at lower temperature. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel organic-inorganic hybrid membranes have been prepared employing Nafion and acid-functionalized meso-structured molecular sieves (MMS) with varying structures and surface area. Acid-functionalized silica nanopowder of surface area 60 m(2)/g, silica meso-structured cellular foam (MSU-F) of surface area 470 m(2)/g and silica meso-structured hexagonal frame network (MCM-41) of surface area 900 m(2)/g have been employed as potential filler materials to form hybrid membranes with Nafion framework. The structural behavior, water uptake, proton conductivity and methanol permeability of these hybrid membranes have been investigated. DMFCs employing Nafion-silica MSU-F and Nafion-silica MCM-41 hybrid membranes deliver peak-power densities of 127 mW/cm(2) and 100 mW/cm(2), respectively; while a peak-power density of only 48 mW/cm(2) is obtained with the DMFC employing pristine recast Nafion membrane under identical operating conditions. The aforesaid characteristics of the hybrid membranes could be exclusively attributed to the presence of pendant sulfonic acid groups in the filler, which provide fairly continuous proton-conducting pathways between filler and matrix in the hybrid membranes facilitating proton transport without any trade-off between its proton conductivity and methanol crossover. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.036211jes] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methanol-inducible alcohol oxidase I (AOXI) promoter of the methylotrophic yeast, Pichia pastoris, is used widely for the production of recombinant proteins. AOXI transcription is regulated by the zinc finger protein Mxr1p (methanol expression regulator 1). ROP (repressor of phosphoenolpyruvate carboxykinase, PEPCK) is a methanol- and biotin starvation-inducible zinc finger protein that acts as a negative regulator of PEPCK in P. pastoris cultured in biotin-deficient, glucose-ammonium medium. The function of ROP during methanol metabolism is not known. In this study, we demonstrate that ROP represses methanol-inducible expression of AOXI when P. pastoris is cultured in a nutrient-rich medium containing yeast extract, peptone, and methanol (YPM). Deletion of the gene encoding ROP results in enhanced expression of AOXI and growth promotion whereas overexpression of ROP results in repression of AOXI and growth retardation of P. pastoris cultured in YPM medium. Surprisingly, deletion or overexpression of ROP has no effect on AOXI gene expression and growth of P. pastoris cultured in a minimal medium containing yeast nitrogen base and methanol (YNBM). Subcellular localization studies indicate that ROP translocates from cytosol to nucleus of cells cultured in YPM but not YNBM. In vitro DNA binding studies indicate that AOXI promoter sequences containing 5' CYCCNY 3' motifs serve as binding sites for Mxr1p as well as ROP. Thus, Mxr1p and ROP exhibit the same DNA binding specificity but regulate methanol metabolism antagonistically in P. pastoris. This is the first report on the identification of a transcriptional repressor of methanol metabolism in any yeast species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technical feasibility of utilization of fly ash as a low-cost adsorbent for the removal of metals from water has been studied. For two types of fly ashes, the retention capacities of copper, lead, and zinc metal ions have been studied. Contact time, initial concentration, and pH have been varied and their effect on retention mechanism has been studied. The dominant mechanisms responsible for retention are found to be precipitation due to the presence of calcium hydroxide, and adsorption due to the presence of silica and alumina oxide surfaces in the fly ash. First-order kinetic plots have revealed that the rate constant increases with increase in the initial concentration and pH. Langmuir adsorption isotherms have been plotted to study the maximum adsorption capacities for metal ions considered under different conditions. X-ray diffraction studies revealed the formation of new peaks corresponding to respective metal ions precipitates under alkaline conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the room temperature cell performance of alkaline direct methanol fuel cells (ADMFCs) with nitrogen-doped carbon nanotubes (NCNTs) as cathode materials. NCNTs show excellent oxygen reduction reaction activity and methanol tolerance in alkaline medium. The open-circuit-voltage (OCV) as well as the power density of ADMFCs first increases and then saturates with NCNT loading. Similarly, the OCV initially increases and reaches saturation with the increase in the concentration of methanol feed stock. Overall, NCNTs exhibit excellent catalytic activity and stability with respect to Pt based cathodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-ion (Ag, Co, Ni, and Pd) doped TiO2 nanocatalysts were successfully embedded on carbon-covered alumina supports. The CCA-embedded catalysts were crystalline and had a high surface area compared to the free metal-ion doped titania nanocatalysts while they still retained the anatase phase of the core TiO2. These catalysts were photocatalytically active under solar light irradiation. Rhodamine B was used as a model pollutant and the reactivity followed a pseudo-first-order reaction kinetics. The reaction rate of the CCA-supported catalysts was Pd > Ag > Co > Ni. Among the ratios of the CCA:catalyst used, it was found that the 1:1 ratio had the fastest reaction rate, followed by the 1:2 ratio, while the 2:1 ratio exhibited the lowest reaction rate. The CCA/metal-ion doped titania were found to have photocatalytic activities comparable with those of CCA-supported titania.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic hybrid membranes are prepared from Nafion and acid functionalized aluminosilicate with varying structures and surface areas. Acid-functionalized mesostructured aluminosilicate with cellular foam framework (Al-MSU-F type) of surface area 463 m(2) g(-1), acid-functionalized aluminosilicate molecular sieves (Al-HMS type) of surface area 651 m(2) g(-1) and acid-functionalized mesostructured aluminosilicate with hexagonal network (Al-MCM-41 type) of surface area 799 m(2) g(-1) have been employed as potential filler materials to form hybrid membranes with Nafion. The structural behavior, water uptake, ion-exchange capacity, proton conductivity and methanol permeability of the hybrid membranes are extensively investigated. Direct methanol fuel cells (DMFCs) with Al-HMS-Nafion and Al-MCM-41-Nafion hybrid membranes deliver respective peak power-densities of 170 mW cm(-2) and 246 mW cm(-2), while a peak power-density of only 48 mW cm(-2) is obtained for the DMFC employing pristine recast-Nafion membrane under identical operating conditions. The unique properties associated with hybrid membranes could be exclusively attributed to the presence of pendant sulfonic-acid groups in the filler materials, which provide proton-conducting pathways between the filler and matrix in the hybrid membranes, and facilitate proton transport with adequate balance between proton conductivity and methanol permeability. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct and study classical solutions in Chern-Simons supergravity based on the superalgebra sl(N vertical bar N = 1). The algebra for the N = 3 case is written down explicitly using the fact that it arises as the global part of the super conformal W-3 superalgebra. For this case we construct new classical solutions and study their supersymmetry. Using the algebra we write down the Killing spinor equations and explicitly construct the Killing spinor for conical defects and black holes in this theory. We show that for the general sl(N|N - 1) theory the condition for the periodicity of the Killing spinor can be written in terms of the products of the odd roots of the super algebra and the eigenvalues of the holonomy matrix of the background. Thus the supersymmetry of a given background can be stated in terms of gauge invariant and well defined physical observables of the Chern-Simons theory. We then show that for N >= 4, the sl(N|N - 1) theory admits smooth supersymmetric conical defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riboflavin tetraacetate-catalyzed aerobic photooxidation of 1-(4-methoxyphenyl)ethanol was investigated as a model reaction under blue visible light in different soft gel materials, aiming to establish their potential as reaction vessels for photochemical transformations. Three strategies involving different degrees of organization of the catalyst within the gel network were explored, and the results compared to those obtained in homogeneous and micellar solutions. In general, physical entrapment of both the catalyst and the substrate under optimized concentrations into several hydrogel matrices (including low-molecular-weight and biopolymer-based gels) allowed the photooxidation with conversions between 55 and 100% within 120 min (TOF similar to 0.045-0.08 min(-1); k(obs) similar to 0.011-0.028 min(-1)), albeit with first-order rates ca. 1-3-fold lower than in solution under comparable non-stirred conditions. Remarkably, the organogel made of a cyclohexane-based bisamide gelator in CH3CN not only prevented the photodegradation of the catalyst but also afforded full conversion in less than 60 min (TOF similar to 0.167 min(-1); k(obs) similar to 0.073 min(-1)) without the need of additional proton transfer mediators (e. g., thiourea) as it occurs in CH3CN solutions. In general, the gelators could be recycled without detriment to their gelation ability and reaction rates. Moreover, kinetics could be fine-tuned according to the characteristics of the gel media. For instance, entangled fibrillar networks with relatively high mechanical strength were usually associated with lower reaction rates, whereas wrinkled laminated morphologies seemed to favor the reaction. In addition, the kinetics results showed in most cases a good correlation with the aeration efficiency of the gel media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial differential equations (PDEs), which describe the excitation and emission light propagation in soft biological tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular geometries using the Green's function approach using both zero and extrapolated boundary conditions. The specific solutions along with the typical data types, such as integrated intensity and the mean time of flight, for various regular geometries were also derived for both time-and frequency-domain cases. (C) 2013 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analytical solutions for the coupled diffusion equations that are encountered in diffuse fluorescence spectroscopy/ imaging for regular geometries were compared with the well-established numerical models, which are based on the finite element method. Comparison among the analytical solutions obtained using zero boundary conditions and extrapolated boundary conditions (EBCs) was also performed. The results reveal that the analytical solutions are in close agreement with the numerical solutions, and solutions obtained using EBCs are more accurate in obtaining the mean time of flight data compared to their counterpart. The analytical solutions were also shown to be capable of providing bulk optical properties through a numerical experiment using a realistic breast model. (C) 2013 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrability of classical strings in the BTZ black hole enables the construction and study of classical string propagation in this background. We first apply the dressing method to obtain classical string solutions in the BTZ black hole. We dress time like geodesics in the BTZ black hole and obtain open string solutions which are pinned on the boundary at a single point and whose end points move on time like geodesics. These strings upon regularising their charge and spins have a dispersion relation similar to that of giant magnons. We then dress space like geodesics which start and end on the boundary of the BTZ black hole and obtain minimal surfaces which can penetrate the horizon of the black hole while being pinned at the boundary. Finally we embed the giant gluon solutions in the BTZ background in two different ways. They can be embedded as a spiral which contracts and expands touching the horizon or a spike which originates from the boundary and touches the horizon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintaining population diversity throughout generations of Genetic Algorithms (GAs) is key to avoid premature convergence. Redundant solutions is one cause for the decreasing population diversity. To prevent the negative effect of redundant solutions, we propose a framework that is based on the multi-parents crossover (MPX) operator embedded in GAs. Because MPX generates diversified chromosomes with good solution quality, when a pair of redundant solutions is found, we would generate a new offspring by using the MPX to replace the redundant chromosome. Three schemes of MPX will be examined and will be compared against some algorithms in literature when we solve the permutation flowshop scheduling problems, which is a strong NP-Hard sequencing problem. The results indicate that our approach significantly improves the solution quality. This study is useful for researchers who are trying to avoid premature convergence of evolutionary algorithms by solving the sequencing problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium oxide-carbon hybrid nanostructure (TiO2-C) with a specific surface area of 350 m(2)/g and an average pore-radius of 21 center dot 8 is synthesized via supramolecular self-assembly with an in situ crystallization process. Subsequently, TiO2-C supported Pt-Ru electro-catalyst (Pt-Ru/TiO2-C) is obtained and investigated as an anode catalyst for direct methanol fuel cells (DMFCs). X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM) have been employed to evaluate the crystalline nature and the structural properties of TiO2-C. TEM images reveal uniform distribution of Pt-Ru nanoparticles (d (Pt -aEuro parts per thousand Ru) = 1 center dot 5-3 center dot 5 nm) on TiO2-C. Methanol oxidation and accelerated durability studies on Pt-Ru/TiO2-C exhibit enhanced catalytic activity and durability compared to carbon-supported Pt-Ru. DMFC employing Pt-Ru/TiO2-C as an anode catalyst delivers a peak-power density of 91 mW/cm(2) at 65 A degrees C as compared to the peak-power density of 60 mW/cm(2) obtained for the DMFC with carbon-supported Pt-Ru anode catalyst operating under similar conditions.