339 resultados para electrochemical reduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Gibbs energy of formation of the spinel MgAl2O4 from component oxides, MgO and α-Al2O3, has been determined in the temperature range 900 to 1250 K using a solid-state cell incorporating single-crystal CaF2 as the solid electrolyte. The cell can be represented as—Pt,O2,MgO+MgF2|CaF2|MgF2+MgAl2O4+α-Al2O3,O2,Pt—The standard Gibbs energy of formation from binary oxides, computed from the reversible emf, can be represented by the expression—capdeltaG°f,ox=−23600 − 5.91T(±150) J/mol—The ‘second-law’ enthalpy of formation of MgAl2O4 obtained in this study is in good agreement with high-temperature solution calorimetric studies reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The removal of oxygen from rare-earth metals (RE, RE=Gd, Tb, Dy, Er) by an electrochemical deoxidation method was investigated. A titanium basket containing the rare-earth metal sample, submerged in molten CaCl2 electrolyte, formed the cathode of an electrolysis cell. A high-purity graphite anode was used. The calcium metal produced at the cathode effectively deoxidized the rare-earth metal. Carbon monoxide and dioxide were generated at the graphite anode. Rare-earth metals containing more than 2000 mass ppm oxygen were deoxidized to 10–50 mass ppm level by electrolysis at 1189 K for 36 ks (10 h). Cyclic voltammetry was used to characterize the molten salt at different stages of the process. The effectiveness of the process is discussed with the aid of a chemical potential diagram for RE–O solid solutions. The new electrochemical technique is compared with the conventional deoxidation methods reported in the literature. The possibility of nitrogen removal from the rare-earth metals by the electrochemical method is outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the authors’ distributed parameter approach for derivation of closed-form expressions for the four-pole parameters of the perforated three-duct muffler components. In this method, three simultaneous second-order partial differential equations are first reduced to a set of six first-order ordinary differential equations. These equations are then uncoupled by means of a modal matrix. The resulting 6 × 6 matrix is reduced to the 2 × 2 transfer matrix using the relevant boundary conditions. This is combined with transfer matrices of other elements (upstream and downstream of this perforated element) to predict muffler performance like noise reduction, which is also measured. The correlation between experimental and theoretical values of noise reduction is shown to be satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel solid-state electrochemical sensors have been designed using the Mg2+ cation conductors incorporating novel solid-state reference electrodes for in-line monitoring of Mg in molten Al during the refining process and also for in-line monitoring of Mg content in molten Al in the alloying process. In this paper we report the preparation of Mg2+ ion conductors, MgAl2O4 and MgZr4(PO4)6, by the solid state ceramic synthesis route, measurement of their electrical properties using ac-impedance spectroscopy and application of the above cation conductors for designing novel electrochemical sensors for monitoring Mg dissolved in molten Al. The activation energy for Mg2+ ion conduction in MgAl2O4 is 2.08 eV and in MgZr4(PO4)6 is 1.7 eV, respectively. The sensors have been found to respond rapidly to change in Mg content in molten aluminium around 1000 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he standard Gibbs energy of formation of CaCu3Ti4O12 (CCTO) from CaTiO3, CuO and TiO2 has been determined as a function of temperature from 925 to 1350 K using a solid-state electrochemical cell with yttria-stabilized zirconia as the solid electrolyte. Combining this result with information in the literature on CaTiO3, the standard Gibbs energy of formation of CCTO from its component binary oxides, CaO, CuO and TiO2, has been obtained: View the MathML source (CaCu3Ti4O12)/J mol−1 (±600) = −125231 + 6.57 (T/K). The oxygen chemical potential corresponding to the reduction of CCTO to CaTiO3, TiO2 and Cu2O has been calculated from the electrochemical measurements as a function of temperature and compared on an Ellingham diagram with those for the reduction of CuO to Cu2O and Cu2O to Cu. The oxygen partial pressures corresponding to the reduction reactions at any chosen temperature can be read using the nomograms provided on either side of the diagram. The effect of the oxygen partial pressure on phase relations in the pseudo-ternary system CaO–CuO/Cu2O–TiO2 at 1273 K has been evaluated. The phase diagrams allow identification of secondary phases that may form during the synthesis of the CCTO under equilibrium conditions. The secondary phases may have a significant effect on the extrinsic component of the colossal dielectric response of CCTO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large reduction in the leakage current behavior in (Ba, Sr)TiO3 (BST) thin films was observed by graded-layer donor doping. The graded doping was achieved by introducing La-doped BST layers in the grown BST films. The films showed a large decrease (about six orders of magnitude) in the leakage current in comparison to undoped films at an electric field of 100 kV/cm. The large decrease in leakage current was attributed to the formation of highly resistive layers, originating from compensating defect chemistry involved for La-doped films grown in oxidizing environment. Temperature-dependent leakage-current behavior was studied to investigate the conduction mechanism and explanations of the results were sought from Poole–Frenkel conduction mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size < 5 μm are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/ dopant b-naphthalene sulfonic acid (b-NSA). Microstructures obtained with scan range of 0??1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 105 to 8 x 10 cm-2. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of Β-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg-1 is obtained, which is greater than the values (350-400 Fg-1 highest) usually reported for this material. Electrochemical impedance spectroscopy proves the superc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modification of exfoliated graphite (EG) electrode with generation 2 poly(propylene imine) dendrimer by electrodeposition resulted in an electrochemical sensor which was used to detect lead ions in water to a limit of 1 ppb and a linear response between 2.5 and 40 ppb using square wave anodic stripping voltammetry (SW-ASV). Pb(II) was also removed from spiked water sample using a 40-mm diameter unmodified EG electrode with an applied potential of -1,000 mV for 180 min. A removal efficiency of 99% was calculated from a 150 mL sample. The results obtained in both cases using SW-ASV, correlated with atomic absorption spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size <5 mu m are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/dopant beta-naphthalene sulfonic acid (beta-NSA). Microstructures obtained with scan range of 0-1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 10(5) to 8 x 10 cm(-2). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of beta-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg(-1) is obtained, which is greater than the values (350-400 Fg(-1) highest) usually reported for this material. Electrochemical impedance spectroscopy proves the supercapacitance behaviour and explains the special inductive component of impedance observed in the high-frequency regime because of the globular structures of PPy deposited

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical oxidation of sodium borohydride (NaBH(4)) and ammonia borane (NH(3)BH(3)) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH(4) as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm(-2) at a load current density of 83 mA cm(-2) is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm(-2) at 105 mA cm(-2) is obtained in the case of AB-based fuel cell at 353 K. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of models which are based on adsorption, nucleation growth and their coupling is discussed. In particular, the potentiostatic response of a model that involves nucleative phase growth via direct incorporation and adsorptive discharge of metal ions on the free area is analysed for both instantaneous and progressive nucleation. This model is able to predict certain experimental features in the potentiostatic transient, like the initial fall, shoulder or maximum (as well as minimum) which have not been predicted by models analysed hitherto.Limiting behaviour for short and long times as well as a description of the above-mentioned features in terms of model parameters are given.A special case of the above model, viz. a reversible adsorption–nucleation model, wherein the adsorption is very fast, is shown to give rise to transients which can be distinguished from the pure nucleation-growth transients only by its parametric dependence, but not by the form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usefulness of dioxomolybdenum reagents in oxo-transfer reactions have been reviewed. The redox ability of dioxomolybdenum reagent has been utilized in designing several synthetic methods, which are useful in organic synthesis. Several reactions such as oxidation of alcohols, sulfides, amines, azides olefins etc are accomplished by using dioxomolybdenum reagents. Similarly, it is also demonstrated that dioxomolybdenum complex is useful in performing reduction of aldehydes, ketones, esters, azides etc. A fine tuning of reaction conditions provides suitable conditions to perform either oxidation or reduction by using catalytic amount of reagents. The oxidation reactions are further simplified by employing the polymer supported molybdenum reagents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality self-assembled V(2)O(5) nanofiber-bundles (NBs) are synthesized by a simple and direct hydrothermal method using a vanadium(V) hydroxylamido complex as a vanadium source in the presence of HNO(3). The possible reaction pathway for the formation of V(2)O(5) NBs is discussed and demonstrated that HNO(3) functions both as an oxidizing and as an acidification agent. V(2)O(5) NBs are single-crystals of an orthorhombic phase that have grown along the [010] direction. A bundle is made of indefinite numbers of homogeneous V(2)O(5) nanofibers where nanofibers have lengths up to several micrometres and widths ranging between 20 and 50 nm. As-prepared V(2)O(5) NBs display a high electrochemical performance in a non-aqueous electrolyte as a cathode material for lithium ion batteries. Field emission properties are also investigated which shows that a low turn-on field of similar to 1.84 V mu m(-1) is required to draw the emission current density of 10 mu Lambda cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an electrochemical route for the integration of graphene with light-sensitive copper-based alloys used in optoelectronic applications. Graphene grown using chemical vapor deposition (CVD) transferred to glass is found to be a robust substrate on which photoconductive CuxS films of 1-2 mu m thickness can be deposited. The effect of growth parameters on the morphology and photoconductivity of CuxS films is presented. Current-voltage (I-V) characterization and photoconductivity decay experiments are performed with graphene as one contact and silver epoxy as the other.