262 resultados para elctron-cooling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents an experimental investigation on the rheology of A356 alloy in semisolid state using a high temperature Couette type viscometer. The molten liquid, resides in the annular space between the cylinders, is stirred and cooled continuously during experiments. The stirring results in fragmentation of dendrites which are transported into bulk liquid and form a semisolid slurry. The viscosity of the slurry is distinct in nature, which depends on microstructure of the suspended dendrites after coarsening. Hence, in the work, the variation of viscosity and microstructure is captured during cooling under different process parameters such as shear rate and cooling rate. Angular velocity of the inner cylinder and torque applied to stir the slurry are recorded to determine the apparent viscosity of the slurry. Temperature of the slurry is recorded to calculate the fraction of solids present in the slurry. For micrograph analysis, a vacuum quartz tube is used to remove the slurry-samples during experiments and they are quenched them in water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the conditions for disc galaxies to produce superbubbles that can break out of the disc and produce a galactic wind. We argue that the threshold surface density of supernovae rate for seeding a wind depends on the ability of superbubble energetics to compensate for radiative cooling. We first adapt Kompaneets formalism for expanding bubbles in a stratified medium to the case of continuous energy injection and include the effects of radiative cooling in the shell. With the help of hydrodynamic simulations, we then study the evolution of superbubbles evolving in stratified discs with typical disc parameters. We identify two crucial energy injection rates that differ in their effects, the corresponding breakout ranging from being gentle to a vigorous one. (a) Superbubbles that break out of the disc with a Mach number of the order of 2-3 correspond to an energy injection rate of the order of 10(-4) erg cm(-2) s(-1), which is relevant for disc galaxies with synchrotron emitting gas in the extra-planar regions. (b) A larger energy injection threshold, of the order of 10(-3) erg cm(-2) s(-1), or equivalently, a star formation surface density of similar to 0.1 M-circle dot yr(-1) kpc(-2), corresponds to superbubbles with a Mach number similar to 5-10. While the milder superbubbles can be produced by large OB associations, the latter kind requires super-starclusters. These derived conditions compare well with observations of disc galaxies with winds and the existence of multiphase halo gas. Furthermore, we find that contrary to the general belief that superbubbles fragment through Rayleigh-Taylor (RT) instability when they reach a vertical height of the order of the scaleheight, the superbubbles are first affected by thermal instability for typical disc parameters and that RT instability takes over when the shells reach a distance of approximately twice the scaleheight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we study the thermal performance of phase-change material (PCM)-based heat sinks under cyclic heat load and subjected to melt convection. Plate fin type heat sinks made of aluminum and filled with PCM are considered in this study. The heat sink is heated from the bottom. For a prescribed value of heat flux, design of such a heat sink can be optimized with respect to its geometry, with the objective of minimizing the temperature rise during heating and ensuring complete solidification of PCM at the end of the cooling period for a given cycle. For given length and base plate thickness of a heat sink, a genetic algorithm (GA)-based optimization is carried out with respect to geometrical variables such as fin thickness, fin height, and the number of fins. The thermal performance of the heat sink for a given set of parameters is evaluated using an enthalpy-based heat transfer model, which provides the necessary data for the optimization algorithm. The effect of melt convection is studied by taking two cases, one without melt convection (conduction regime) and the other with convection. The results show that melt convection alters the results of geometrical optimization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrocaloric effect (ECE) of 0.85PbMg(1/3)Nb(2/3)O(3-)0.15PbTiO(3) (0.85PMN-0.15PT) thin films deposited on (111) Pt/TiO2/SiO2/Si substrate by pulsed laser deposition (PLD) has been calculated. The reversible adiabatic temperature was calculated indirectly using the Maxwell's relation Delta T = -T/C rho integral(E2)(E1) (partial derivative P/partial derivative T)(sigma,E)dE. Permittivity and P-E measurements show an anomaly at 11 degrees C on heating only. This anomaly previously reported are claimed to arise due to the PNR depolarization upon heating. The absence of this anomaly during cooling suggests that no structural phase transition takes place. A negative electrocaloric effect is observed which is explained by the increase in the entropy term.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report detailed evidence for a new paleo-suture zone (the Kumta suture) on the western margin of southern India. The c. 15-km-wide, westward dipping suture zone contains garnet-biotite, fuchsite-haematite, chlorite-quartz, quartz-phengite schists, biotite augen gneiss, marble and amphibolite. The isochemical phase diagram estimations and the high-Si phengite composition of quartz-phengite schist suggest a near-peak condition of c. 18 kbar at c. 550 degrees C, followed by near-isothermal decompression. The detrital SHRIMP U-Pb zircon ages from quartz-phengite schist give four age populations ranging from 3280 to 2993 Ma. Phengite from quartz-phengite schist and biotite from garnet-biotite schist have K-Ar metamorphic ages of ca. 1326 and ca. 1385 Ma respectively. Electron microprobe-CHIME ages of in situ zircons in quartz-phengite schist (ca. 3750 Ma and ca. 1697 Ma) are consistent with the above results. The Bondla ultramafic-gabbro complex in the west of the Kumta suture compositionally represents an arc with K-Ar biotite ages from gabbro in the range 1644-1536 Ma. On the eastern side of the suture are weakly deformed and unmetamorphosed shallow westward-dipping sedimentary rocks of the Sirsi shelf, which has the following upward stratigraphy: pebbly quartzite/sandstone, turbidite, magnetite iron formation, and limestone; farther east the lower lying quartzite has an unconformable contact with ca. 2571 Ma quartzo-feldspathic gneisses of the Dharwar block with a ca. 1733 Ma biotite cooling age. To the west of the suture is a c. 60-km-wide Karwar block mainly consisting of tonalite-trondhjemite-granodiorite (TTG) and amphibolite. The TTGs have U-Pb zircon magmatic ages of ca. 3200 Ma with a rare inherited core age of ca. 3601 Ma. The K-Ar biotite cooling age from the TTGs (1746 Ma and 1796 Ma) and amphibolite (ca. 1697 Ma) represents late-stage uplift. Integration of geological, structural and geochronological data from western India and eastern Madagascar suggest diachronous ocean closure during the amalgamation of Rodinia; in the north at around ca. 1380 Ma, and a progression toward the south until ca. 750 Ma. Satellite imagery based regional structural lineaments suggests that the Betsimisaraka suture continues into western India as the Kumta suture and possibly farther south toward a suture in the Coorg area, representing in total a c. 1000 km long Rodinian suture. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rheological behavior of semi-solid slurries forms the backbone of semi-solid processing of metallic alloys. In particular, the effects of several process and metallurgical parameters such as shear rate, shear time, temperature, rest time and size, distribution and morphology of the primary phase on the viscosity of the slurry needs in-depth characterization. In the present work, rheological behaviour of the semisolid aluminium alloy (A356) slurry is investigated by using a high temperature Searle type Rheometer using concentric cylinders. Three different types of experiment are carried out: isothermal test, continuous cooling test and steady state test. Continuous decrease in viscosity is observed with increasing shear rate at a fixed temperature (isothermal test). It is also found that the viscosity increases with decreasing temperature for a particular shear rate due to increasing solid fraction (continuous cooling test). Thixotropic nature of the slurry is confirmed from the hysteresis loops obtained during experimentation. Time dependence of slurry viscosity has been evaluated from the steady state tests. After a longer shearing time under isothermal conditions the starting dendritic structure of the said alloy is transformed into globular grains due to abrasion, agglomeration, welding and ripening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of partial heating/cooling of the wall on the mixed convection with thermal radiation in incompressible laminar pipe flow has been investigated. The gas is assumed to be gray, emitting and absorbing with constant thermophysical properties except the density variation in the buoyancy term. The partial heating/cooling of the wall has significant effect on the Nusselt number. The radiation parameter increases the heat transfer, but reduces the effect of buoyancy. The heat transfer also increases with the optical thickness until a certain value, beyond which it decreases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a model to realize a fermionic superfluid state in an optical lattice circumventing the cooling problem. Our proposal exploits the idea of tuning the interaction in a characteristically low-entropy state, a band insulator in an optical bilayer system, to obtain a superfluid. By performing a detailed analysis of the model including fluctuations and augmented by a variational quantum Monte Carlo calculation of the ground state, we show that the superfluid state obtained has a high transition temperature of the order of the hopping energy. Our system is designed to suppress other competing orders such as a charge density wave. We suggest a laboratory realization of this model via an orthogonally shaken optical lattice bilayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parent compound of iron chalcogenide superconductors, Fe1+yTe, with a range of excess Fe concentrations exhibits intriguing structural and magnetic properties. Here, the interplay of magnetic and structural properties of Fe1.12Te single crystals have been probed by low-temperature synchrotron X-ray powder diffraction, magnetization, and specific heat measurements. Thermodynamic measurements reveal two distinct phase transitions, considered unique to samples possessing excess Fe content in the range of 0.11 <= y <= 0.13. On cooling, an antiferromagnetic transition, T-N approximate to 57K is observed. A closer examination of powder diffraction data suggests that the transition at TN is not purely magnetic, but accompanied by the commencement of a structural phase transition from tetragonal to orthorhombic symmetry. This is followed by a second prominent first-order structural transition at T-S with T-S < T-N, where an onset of monoclinic distortion is observed. The results point to a strong magneto-structural coupling in this material. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the role of thermal conduction and magnetic fields in cores of galaxy clusters through global simulations of the intracluster medium (ICM). In particular, we study the influence of thermal conduction, both isotropic and anisotropic, on the condensation of multiphase gas in cluster cores. Previous hydrodynamic simulations have shown that cold gas condenses out of the hot ICM in thermal balance only when the ratio of the cooling time (t(cool)) and the free-fall time (t(ff)) is less than approximate to 10. Since thermal conduction is significant in the ICM and it suppresses local cooling at small scales, it is imperative to include thermal conduction in such studies. We find that anisotropic (along local magnetic field lines) thermal conduction does not influence the condensation criterion for a general magnetic geometry, even if thermal conductivity is large. However, with isotropic thermal conduction cold gas condenses only if conduction is suppressed (by a factor less than or similar to 0.3) with respect to the Spitzer value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phase field modelling approach is implemented in the present study towards simulation of microstructure evolution during cooling slope semi solid slurry generation process of A380 Aluminium alloy. First, experiments are performed to evaluate the number of seeds required within the simulation domain to simulate near spherical microstructure formation, occurs during cooling slope processing of the melt. Subsequently, microstructure evolution is studied employing a phase field method. Simulations are performed to understand the effect of cooling rate on the slurry microstructure. Encouraging results are obtained from the simulation studies which are validated by experimental observations. The results obtained from mesoscopic phase field simulations are grain size, grain density, degree of sphericity of the evolving primary Al phase and the amount of solid fraction present within the slurry at different time frames. Effect of grain refinement also has been studied with an aim of improving the slurry microstructure further. Insight into the process has been obtained from the numerical findings, which are found to be useful for process control.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review the two kinds of forces that near-resonant light exerts on atoms the spontaneous force that is used for laser cooling, and the stimulated force that is used for coherent manipulation of atoms. We will discuss an experiment where laser cooling is used to collimate an atomic beam of sodium atoms, and the stimulated force within one period of a one-dimensional standing wave is used as a lens to focus the atoms to a narrow line about 20 nm wide. This kind of atom lithography is an example of the general field of atom optics in which light is used to manipulate atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desalination is one of the most traditional processes to generate potable water. With the rise in demand for potable water and paucity of fresh water resources, this process has gained special importance. Conventional thermal desalination processes involves evaporative methods such as multi-stage flash and solar distils, which are found to be energy intensive, whereas reverse osmosis based systems have high operating and maintenance costs. The present work describes the Adsorption Desalination (AD) system, which is an emerging process of thermal desalination cum refrigeration capable of utilizing low grade heat easily obtainable from even non-concentrating type solar collectors. The system employs a combination of flash evaporation and thermal compression to generate cooling and desalinated water. The current study analyses the system dynamics of a 4-bed single stage silica-gel plus water based AD system. A lumped model is developed using conservation of energy and mass coupled with the kinetics of adsorption/desorption process. The constitutive equations for the system components viz. evaporator, adsorber and condenser, are solved and the performance of the system is evaluated for a single stage AD system at various condenser temperatures and cycle times to determine optimum operating conditions required for desalination and cooling. (C) 2013 P. Dutta. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antisite disorder is observed to have significant impact on the magnetic properties of the double perovskite Y2CoMnO6 which has been recently identified as a multiferroic. A paramagnetic-ferromagnetic phase transition occurs in this material at T-c approximate to 75 K. At 2K, it displays a strong ferromagnetic hysteresis with a significant coercive field of H-c approximate to 15 kOe. Sharp steps are observed in the hysteresis curves recorded below 8K. In the temperature range 2K <= T <= 5K, the hysteresis loops are anomalous as the virgin curve lies outside the main loop. The field-cooling conditions as well as the rate of field-sweep are found to influence the steps. Quantitative analysis of the neutron diffraction data shows that at room temperature, Y2CoMnO6 consists of 62% of monoclinic P2(1)/n with nearly 70% antisite disorder and 38% Pnma. The bond valence sums indicate the presence of other valence states for Co and Mn which arise from disorder. We explain the origin of steps by using a model for pinning of magnetization at the antiphase boundaries created by antisite disorder. The steps in magnetization closely resemble the martensitic transformations found in intermetallics and display first-order characteristics as revealed in the Arrott's plots. (C) 2014 AIP Publishing LLC.