377 resultados para domain size


Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric materials with high tunability, low loss, and desired range of permittivity are an attractive class of materials for a variety of applications in microwave components such as tunable filters, phase shifters, antennas, etc. In this article, we have investigated the low frequency dielectric properties of BaZrO3/BaTiO3 and SrTiO3/BaZrO3 superlattices of varying modulation periods for the potential application toward electrically tunable devices. The dielectric response of the superlattices as a function of temperature revealed remarkable stability for both types of superlattices, with no observed dielectric anomalies within that range. Dielectric losses were also nominally low with minimal variation within the measured temperature range. Sufficiently high tunability of ∼ 40% was observed for the BaZrO3/BaTiO3 superlattices at the lowest individual layer thicknesses. In comparison, the SrTiO3/BaZrO3 superlattices showed a minimum tunability for lowest period structures. It showed maximum tunability of ∼ 20% at 10 kHz and room temperature at an intermediate dimension of 3.85 nm periodicity superlattice. The tunability value degraded with increasing as well as decreasing periodicities for the SrTiO3/BaZrO3 superlattices. The dielectric response has been explained on the basis of size effects, interlayer coupling between dissimilar materials, domain contribution, and depolarizing electric fields.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first successful attempt to produce simultaneously ultrafine grain size and weak texture in a single-phase magnesium alloy Mg-3Al-0.4Mn through an optimal choice of processing parameters in a modified multi-axial forging (MAF) process. An average grain size of similar to 0.4 mu m and a weak texture could be achieved. This has led to an increase in the strength as well as room-temperature ductility (55%). The plot of the yield loci shows a decrease in anisotropy after MAF. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we treat some eigenvalue problems in periodically perforated domains and study the asymptotic behaviour of the eigenvalues and the eigenvectors when the number of holes in the domain increases to infinity Using the method of asymptotic expansion, we give explicit formula for the homogenized coefficients and expansion for eigenvalues and eigenvectors. If we denote by ε the size of each hole in the domain, then we obtain the following aysmptotic expansion for the eigenvalues: Dirichlet: λε = ε−2 λ + λ0 +O (ε), Stekloff: λε = ελ1 +O (ε2), Neumann: λε = λ0 + ελ1 +O (ε2).Using the method of energy, we prove a theorem of convergence in each case considered here. We briefly study correctors in the case of Neumann eigenvalue problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beginning with the ‘frog-leg experiment’ by Galvani (1786), followed by the demonstrations of Volta pile by Volta (1792) and lead-acid accumulator by Plante´ (1859), several battery chemistries have been developed and realized commercially. The development of lithium-ion rechargeable battery in the early 1990s is a breakthrough in the science and technology of batteries. Owing to its high energy density and high operating voltage, the Li-ion battery has become the battery of choice for various portable applications such as note-book computers, cellular telephones, camcorders, etc. Huge efforts are underway in succeeding the development of large size batteries for electric vehicle applications. The origin of lithium-ion battery lies in the discovery that Li+-ions can reversibly be intercalated into/de-intercalated from the Van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. By employing carbon as the negative electrode material in rechargeable lithium-ion batteries, the problems associated with metallic lithium in rechargeable lithium batteries have been mitigated. Complimentary investigations on intercalation compounds based on transition metals have resulted in establishing LiCoO2 as the promising cathode material. By employing carbon and LiCoO2, respectively, as the negative and positive electrodes in a non-aqueous lithium-salt electrolyte,a Li-ion cell with a voltage value of about 3.5 V has resulted.Subsequent to commercialization of Li-ion batteries, a number of research activities concerning various aspects of the battery components began in several laboratories across the globe. Regarding the positive electrode materials, research priorities have been to develop different kinds of active materials concerning various aspects such as safety, high capacity, low cost, high stability with long cycle-life, environmental compatibility,understanding relationships between crystallographic and electrochemical properties. The present review discusses the published literature on different positive electrode materials of Li-ion batteries, with a focus on the effect of particle size on electrochemical performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodisperse polyhedral In(2)O(3) nanoparticles were synthesized by differential mobility classification of a polydisperse aerosol formed by evaporation of indium at atmospheric pressure. When free molten indium particles oxidize, oxygen is absorbed preferentially on certain planes leading to the formation of polyhedral In(2)O(3) nanoparticles. It is shown that the position of oxygen addition, its concentration, the annealing temperature and the type of carrier gas are crucial for the resulting particle shape and crystalline quality. Semiconducting nanopolyhedrals, especially nanocubes used for sensors, are expected to offer enhanced sensitivity and improved response time due to the higher surface area as compared to spherical particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overexpression of Notch receptors and ligands has been associated with various cancers and developmental disorders, making Notch a potential therapeutic target. Here, we report characterization of Notch1 monoclonal antibodies (mAb) with therapeutic potential. The mAbs generated against epidermal growth factor (EGF) repeats 11 to 15 inhibited binding of Jagged1 and Delta-like4 and consequently, signaling in a dose-dependent manner, the antibodies against EGF repeats 11 to 12 being more effective than those against repeats 13 to 15. These data emphasize the role of EGF repeats 11 to 12 in ligand binding. One of the mAbs, 602.101, which specifically recognizes Notch1, inhibited ligand-dependent expression of downstream target genes of Notch such as HES-1, HES-5, and HEY-L in the breast cancer cell line MDA-MB-231. The mAb also decreased cell proliferation and induced apoptotic cell death. Furthermore, exposure to this antibody reduced CD44(Hi)/CD24(Low) subpopulation in MDA-MB-231 cells, suggesting a decrease in the cancer stem-like cell subpopulation. This was confirmed by showing that exposure to the antibody decreased the primary, secondary, and tertiary mammosphere formation efficiency of the cells. Interestingly, effect of the antibody on the putative stem-like cells appeared to be irreversible, because the mammosphere-forming efficiency could not be salvaged even after antibody removal during the secondary sphere formation. The antibody also modulated expression of genes associated with stemness and epithelial-mesenchymal transition. Thus, targeting individual Notch receptors by specific mAbs is a potential therapeutic strategy to reduce the potential breast cancer stem-like cell subpopulation. Mol Cancer Ther; 11(1); 77-86. (C) 2011 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the ``nonamer binding region,'' which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following topics were dealt with: document analysis and recognition; multimedia document processing; character recognition; document image processing; cheque processing; form processing; music processing; document segmentation; electronic documents; character classification; handwritten character recognition; information retrieval; postal automation; font recognition; Indian language OCR; handwriting recognition; performance evaluation; graphics recognition; oriental character recognition; and word recognition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking asymmetry in attention effects within neurons: when two stimuli are in a neuron's receptive field, directing attention to the preferred stimulus modulates firing rates more than directing attention to the nonpreferred stimulus. These findings show that much of the neuron-to-neuron variability in modulation of responses by attention depends on variability in the way the neurons process multiple stimuli, rather than differences in the influence of top-down signals related to attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoelectrode of Eosin-Y sensitised DSSC was modified by incorporating Au-nanoparticles to enhance the power conversion efficiency via scattering from surface plasmon polaritons. Size dependence of Au nanoparticle on conversion efficiency was performed in DSSC for the first time by varying the particle size from 20 to 94 nm. It was found that, the conversion efficiency is highly dependent on the size of the Au nanoparticles. For larger particles (>50 nm), the efficiency was found to be increased due to constructive interference between the transmitted and scattered waves from the Au nanoparticle while for smaller particles, the efficiency decreases due to destructive interference. Also a reduction in the V-oc was observed in general, due to the negative shifting of the TiO2 Fermi level on the adsorption of Au nanoparticle. This shift was negligible for larger particles. When 94 nm size particles were employed the conversion efficiency was doubled from 0.74% to 1.52%. This study points towards the application of the scattering effect of metal nanoparticle to enhance the conversion efficiency in DSSCs. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology for selection of static VAR compensator location based on static voltage stability analysis of power systems. The analysis presented here uses the L-index of load buses, which includes voltage stability information of a normal load flow and is in the range of 0 (no load of system) to 1 (voltage collapse). An approach has been presented to select a suitable size and location of static VAR compensator in an EHV network for system voltage stability improvement. The proposed approach has been tested under simulated conditions on a few power systems and the results for a sample radial network and a 24-node equivalent EHV power network of a practical system are presented for illustration purposes. © 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature bonded interface indentation experiments are carried out on a Zr based bulk metallic glass (BMG) to examine the plastic deformation characteristics in subsurface deformation zone under a Vickers indenter. The results show that the shear bands are semi-circular in shape and propagate in radial direction. At all temperatures the inter-band spacing along the indentation axis is found to increase with increasing distance from the indenter tip. The average shear band spacing monotonically increases with temperature whereas the shear band induced plastic deformation zone is invariant with temperature. These observations are able to explain the increase in pressure sensitive plastic flow of BMGs with temperature. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphoinositide-specific phospholipase C (PLC) is involved in Ca2+ mediated signalling events that lead to altered cellular status. Using various sequence-analysis methods, we identified two conserved motifs in known PLC sequences. The identified motifs are located in the C2 domain of plant PLCs and are not found in any other protein. These motifs are specifically found in the Ca2+ binding loops and form adjoining beta strands. Further, we identified certain conserved residues that are highly distinct from corresponding residues of animal PLCs. The motifs reported here could be used to annotate plant-specific phospholipase C sequences. Furthermore, we demonstrated that the C2 domain alone is capable of targeting PLC to the membrane in response to a Ca2+ signal. We also showed that the binding event results from a change in the hydrophobicity of the C2 domain upon Ca2+ binding. Bioinformatic analyses revealed that all PLCs from Arabidopsis and rice lack a transmembrane domain, myristoylation and GPI-anchor protein modifications. Our bioinformatic study indicates that plant PLCs are located in the cytoplasm, the nucleus and the mitochondria. Our results suggest that there are no distinct isoforms of plant PLCs, as have been proposed to exist in the soluble and membrane associated fractions. The same isoform could potentially be present in both subcellular fractions, depending on the calcium level of the cytosol. Overall, these data suggest that the C2 domain of PLC plays a vital role in calcium signalling.