223 resultados para conclusive conjunction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beneficial effects of carbon grafting into the iron active material for rechargeable alkaline-iron-electrodes with and without Bi2S3 additive is probed by in situ X-ray diffraction in conjunction with Extended X-ray Absorption Fine Structure (EXAFS) and electrochemistry. EXAFS data unravel that the composition of pristine active material (PAM) for iron electrodes comprises 87% of magnetite and 13% of alpha-iron while carbon-grafted active material comprises 60% of magnetite and 40% of alpha-iron. In situ XRD patterns are recorded using a specially designed electrochemical cell. XRD data reflect that magnetite present in PAM iron electrode, without bismuth sulfide additive, is not reduced during charging while PAM iron electrode with bismuth sulfide additive is partially reduced to alpha-Fe/Fe(OH)(2). Interestingly, carbon-grafted-iron electrodes with bismuth sulfide exhibit complete conversion of active material to alpha-Fe/Fe(OH)2. The ameliorating effect of carbon grafting is substantiated by kinetic parameters obtained from steady-state potentiostatic polarization and Tafel plots. The mechanism for iron-electrode charge - discharge reactions are discussed in the light of the potential - pH diagrams for Fe - H2O, S - H2O and FeSads - H2O systems and it is surmised that carbon grafting into iron active material promotes its electrochemical utilization. (C) The Author(s) 2015. Published by ECS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA minor groove binders are an important class of chemotherapeutic agents. These small molecule inhibitors interfere with various cellular processes like DNA replication and transcription. Several benzimidazole derivatives showed affinity towards the DNA minor groove. In this study we show the synthesis and biological studies of a novel benzimidazole derivative (MH1), that inhibits topoisomerase II activity and in vitro transcription. UV-visible and fluorescence spectroscopic methods in conjunction with Hoechst displacement assay demonstrate that MH1 binds to DNA at the minor groove. Cytotoxic studies showed that leukemic cells are more sensitive to MH1 compared to cancer cells of epithelial origin. Further, we find that MH1 treatment leads to cell cycle arrest at G2/M, at early time points in Molt4 cells. Finally multiple cellular assays demonstrate that MH1 treatment leads to reduction in MMP, induction of apoptosis by activating CASPASE 9 and CASPASE 3. Thus our study shows MH1, a novel DNA minor groove binder, induces cytotoxicity efficiently in leukemic cells by activating the intrinsic pathway of apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titania aerogels were synthesized by sol-gel route followed by ambient pressure subcritical drying technique. The aerogels synthesized in the present work possess a maximum surface area of 252 m(2)/g. The pore size distribution is between 2 and 30 nm which confirms their mesoporosity. The oxygen plasma treatment on titania aerogel thin films improved the surface area up to 273 m(2)/g and produced additional hydrophilic groups on the surface. It is confirmed by BET surface area, XPS and thermal analysis in conjunction with dye adsorption studies. After plasma treatment the dye adsorption capacity was increased 2.5 times higher than that of untreated aerogel film. The increased surface area and the hydrophilic groups generated on the titania aerogel surface during plasma treatment are responsible for enhanced dye adsorption. The overall nanoporous morphology of titania aerogel is preserved after plasma treatment. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Affine transformations have proven to be very powerful for loop restructuring due to their ability to model a very wide range of transformations. A single multi-dimensional affine function can represent a long and complex sequence of simpler transformations. Existing affine transformation frameworks like the Pluto algorithm, that include a cost function for modern multicore architectures where coarse-grained parallelism and locality are crucial, consider only a sub-space of transformations to avoid a combinatorial explosion in finding the transformations. The ensuing practical tradeoffs lead to the exclusion of certain useful transformations, in particular, transformation compositions involving loop reversals and loop skewing by negative factors. In this paper, we propose an approach to address this limitation by modeling a much larger space of affine transformations in conjunction with the Pluto algorithm's cost function. We perform an experimental evaluation of both, the effect on compilation time, and performance of generated codes. The evaluation shows that our new framework, Pluto+, provides no degradation in performance in any of the Polybench benchmarks. For Lattice Boltzmann Method (LBM) codes with periodic boundary conditions, it provides a mean speedup of 1.33x over Pluto. We also show that Pluto+ does not increase compile times significantly. Experimental results on Polybench show that Pluto+ increases overall polyhedral source-to-source optimization time only by 15%. In cases where it improves execution time significantly, it increased polyhedral optimization time only by 2.04x.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we study the well-known r-DIMENSIONAL k-MATCHING ((r, k)-DM), and r-SET k-PACKING ((r, k)-SP) problems. Given a universe U := U-1 ... U-r and an r-uniform family F subset of U-1 x ... x U-r, the (r, k)-DM problem asks if F admits a collection of k mutually disjoint sets. Given a universe U and an r-uniform family F subset of 2(U), the (r, k)-SP problem asks if F admits a collection of k mutually disjoint sets. We employ techniques based on dynamic programming and representative families. This leads to a deterministic algorithm with running time O(2.851((r-1)k) .vertical bar F vertical bar. n log(2)n . logW) for the weighted version of (r, k)-DM, where W is the maximum weight in the input, and a deterministic algorithm with running time O(2.851((r-0.5501)k).vertical bar F vertical bar.n log(2) n . logW) for the weighted version of (r, k)-SP. Thus, we significantly improve the previous best known deterministic running times for (r, k)-DM and (r, k)-SP and the previous best known running times for their weighted versions. We rely on structural properties of (r, k)-DM and (r, k)-SP to develop algorithms that are faster than those that can be obtained by a standard use of representative sets. Incorporating the principles of iterative expansion, we obtain a better algorithm for (3, k)-DM, running in time O(2.004(3k).vertical bar F vertical bar . n log(2)n). We believe that this algorithm demonstrates an interesting application of representative families in conjunction with more traditional techniques. Furthermore, we present kernels of size O(e(r)r(k-1)(r) logW) for the weighted versions of (r, k)-DM and (r, k)-SP, improving the previous best known kernels of size O(r!r(k-1)(r) logW) for these problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new procedure for the identification of regular secondary structures using a C-alpha trace has identified 659 pi-helices in 3582 protein chains, solved at high resolution. Taking advantage of this significantly expanded database of pi-helices, we have analysed the functional and structural roles of helices and determined the position-wise amino acid propensity within and around them. These helices range from 5 to 18 residues in length with the average twist and rise being 85.2 +/- 7.2 and 1.28 +/- 0.31 angstrom, respectively. A total of 546 (similar to 83%) out of 659 pi-helices occur in conjunction with alpha-helices, with 101 pi-helices being interspersed between two alpha-helices. The majority of interspersed pi-helices were found to be conserved across a large number of structures within a protein family and produce a significant bend in the overall helical segment as well as local distortions in the neighbouring a-helices. The presence of a pi-helical fragment leads to appropriate orientation of the constituent residues, so as to facilitate favourable interactions and also help in proper folding of the protein chain. In addition to intra helical 6 -> 1 N H center dot center dot center dot O hydrogen bonds, pi-helices are also stabilized by several other non-bonded interactions. pi-Helices show distinct positional residue preferences, which are different from those of a-helices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knock-down studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertical uplift resistance of interfering pipelines buried in sands has been computed using the lower-bound limit analysis in conjunction with finite elements and nonlinear optimization. The soil mass is assumed to follow the Mohr-Coulomb failure criterion and an associated flow rule. It is specified that all the pipes fail simultaneously at the same magnitude of the failure load. For different clear spacing (S) between the pipes, the magnitude of the efficiency factor (xi(gamma)) is determined. Because of pipes' interference, with a reduction in the spacing between the pipelines, the magnitude of xi(gamma) is found to decrease continuously. The results were found to compare quite well with the available data from literature for horizontal strip anchors. (C) 2015 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The derivation of a quasi-geostrophic system from the rotating shallow-water equations on a midlatitude -plane coupled with moisture is presented. Condensation is prescribed to occur whenever the moisture at a point exceeds a prescribed saturation value. It is seen that a slow condensation time-scale is required to obtain a consistent set of equations at leading order. Further, since the advecting wind fields are geostrophic, changes in moisture (and hence precipitation) occur only via non-divergent mechanisms. Following observations, a saturation profile with gradients in the zonal and meridional directions is prescribed. A purely meridional gradient has the effect of slowing down the dry Rossby waves, through a reduction in the equivalent gradient' of the background potential vorticity. A large-scale unstable moist mode results on the inclusion of a zonal gradient by itself, or in conjunction with a meridional moisture gradient. For gradients that are are representative of the atmosphere, the most unstable moist mode propagates zonally in the direction of increasing moisture, matures over an intraseasonal time-scale and has small phase speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Southern Granulite Terrain in India is a collage of crustal blocks ranging in age from Archean to Neoproterozoic. This study investigate the tectonic evolution of one of the northernmost block- the Biligiri Block (BRB) through a multidisciplinary approach involving field investigation, petrographic studies, LA-ICPMS zircon U-Pb geochronology, Hf isotopic analyses, metamorphic P-T phase diagram computations, and crustal thickness modeling. The garnet bearing quartzofeldspathic gneiss from the central BRB preserve Mesoarchean magmatic zircons with ages between 3207 and 2806 Ma and positive epsilon Hf value (+2.7) which possibly indicates vestiges of a Mesoarchean primitive continental crust. The occurrence of quartzite-iron formation intercalation as well as ultramafic lenses along the western boundary of the BRB is interpreted to indicate that the Kollegal structural lineament is a possible paleo-suture. Phase diagram computation of a metagabbro from the southwestern periphery of the Kollegal suture zone reveals high-pressure (similar to 18.5 kbar) and medium-temperature (similar to 840 degrees C) metamorphism, likely during eastward subduction of the Western Dharwar oceanic crust beneath the Mesoarchean BRB. In the model presented here, slab subduction, melting and underplating processes generated arc magmatism and subsequent charnockitization within the BRB between ca. 2650 Ma and ca. 2498 Ma. These results thus reveal Meso- to Neoarchean tectonic evolution of the BRB. The spatial variation of crustal thickness, derived from flexure inversion technique, provides additional constraints on the tectonic linkage of the BRB with its surrounding terrains. In conjunction with published data, the Moyar and the Kollegal suture zones are considered to mark the trace of ocean closure along which the Nilgiri and Biligiri Rangan Blocks accreted on to the Western Dharwar Craton. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solvent plays a key role in diverse physico-chemical and biological processes. Therefore, understanding solute-solvent interactions at the molecular level of detail is of utmost importance. A comprehensive solvatochromic analysis of benzophenone (Bzp) was carried out in various solvents using Raman and electronic spectroscopy, in conjunction with Density Functional Theory (DFT) calculations of supramolecular solute-solvent clusters generated using classical Molecular Dynamics Simulations (c-MDSs). The >C=O stretching frequency undergoes a bathochromic shift with solvent polarity. Interestingly, in protic solvents this peak appears as a doublet: c-MDS and ad hoc explicit solvent ab initio calculations suggest that the lower and higher frequency peaks are associated with the hydrogen bonded and dangling carbonyl group of Bzp, respectively. Additionally, the dangling carbonyl in methanol (MeOH) solvent is 4 cm(-1) blue-shifted relative to acetonitrile solvent, despite their similar dipolarity/polarizability. This suggests that the cybotactic region of the dangling carbonyl group in MeOH is very different from its bulk solvent structure. Therefore, we propose that this blue-shift of the dangling carbonyl originates in the hydrophobic solvation shell around it resulting from extended hydrogen bonding network of the protic solvents. Furthermore, the 1(1)n pi* (band I) and 1(1)pi pi* (band II) electronic transitions show a hypsochromic and bathochromic shift, respectively. In particular, these shifts in protic solvents are due to differences in their excited state-hydrogen bonding mechanisms. Additionally, a linear relationship is obtained for band I and the >C=O stretching frequency (cm(-1)), which suggests that the different excitation wavelengths in band I correspond to different solvation states. Therefore, we hypothesize that the variation in excitation wavelengths in band I could arise from different solvation states leading to varying solvation dynamics. This will have implications for ultrafast processes associated with electron-transfer, charge transfer, and also the photophysical aspects of excited states. (C) 2016 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite extensive research into triosephosphate isomerases (TIMs), there exists a gap in understanding of the remarkable conjunction between catalytic loop-6 (residues 166-176) movement and the conformational flip of Glu165 (catalytic base) upon substrate binding that primes the active site for efficient catalysis. The overwhelming occurrence of serine at position96 (98% of the 6277 unique TIM sequences), spatially proximal to E165 and the loop-6 residues, raises questions about its role in catalysis. Notably, Plasmodium falciparum TIM has an extremely rare residuephenylalanineat this position whereas, curiously, the mutant F96S was catalytically defective. We have obtained insights into the influence of residue96 on the loop-6 conformational flip and E165 positioning by combining kinetic and structural studies on the PfTIM F96 mutants F96Y, F96A, F96S/S73A, and F96S/L167V with sequence conservation analysis and comparative analysis of the available apo and holo structures of the enzyme from diverse organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T-1 and T-2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S-0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S-0, T-1, and T-2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the n pi* triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents. (C) 2016 AIP Publishing LLC.