263 resultados para Photonic band gap


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel crystalline tetragonal ZrO2: Eu3+ phosphors were prepared by a facile and efficient low temperature solution combustion method at 400 +/- 10 degrees C using oxalyl dihydrazide (ODH) as fuel. The powder X-ray diffraction patterns and Rietveld confinement of as formed ZrO2: Eu3+ (1-11 mol%) confirmed the presence of body centered tetragonal phase. The crystallite size estimated from Scherrer's and W-H plots was found to be in the range of 7-17 nm. These results were in good agreement with transmission electron microscopy studies. The calculated microstrain in most of the planes indicated the presence of tensile stress along various planes of the particles. The observed space group (P4(2)/nmc) revealed the presence of cations in the 2b positions (0.75, 0.25, 0.25) and the anions in the 4d positions (0.25, 0.25, 0.45). The optical band gap energies estimated from Wood and Tauc's relation was found to be in the range 4.3-4.7 eV. Photoluminescence (PL) emission was recorded under 394 and 464 nm excitation shows an intense emission peak at 605 nm along with other emission peaks at 537, 592, 605 and 713 nm. These emission peaks were attributed to the transition of D-5(0) -> F-7(J) (J = 0, 1, 2, 3) of Eu3+ ions. The high ratio of Intensity of (D-5(0) -> F-7(2)) and (D-5(0) -> F-7(1)) infers that Eu3+ occupies sites with a low symmetry and without an inversion center. CIE color coordinates indicated the red regions which could meet the needs of illumination devices. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sensitive dependence of the electronic and thermoelectric properties of MoS2 on applied strain opens up a variety of applications in the emerging area of straintronics. Using first-principles-based density functional theory calculations, we show that the band gap of a few layers of MoS2 can be tuned by applying normal compressive (NC) strain, biaxial compressive (BC) strain, and biaxial tensile (BT) strain. A reversible semiconductor-to-metal transition (S-M transition) is observed under all three types of strain. In the case of NC strain, the threshold strain at which the S-M transition occurs increases when the number of layers increase and becomes maximum for the bulk. On the other hand, the threshold strain for the S-M transition in both BC and BT strains decreases when the number of layers increase. The difference in the mechanisms for the S-M transition is explained for different types of applied strain. Furthermore, the effect of both strain type and the number of layers on the transport properties are also studied using Botzmann transport theory. We optimize the transport properties as a function of the number of layers and the applied strain. 3L- and 2L-MoS2 emerge as the most efficient thermoelectric materials under NC and BT strain, respectively. The calculated thermopower is large and comparable to some of the best thermoelectric materials. A comparison among the feasibility of these three types of strain is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first-principles density functional theory calculations, we show a semimetal to semiconducting electronic phase transition for bulk TiS2 by applying uniform biaxial tensile strain. This electronic phase transition is triggered by charge transfer from Ti to S, which eventually reduces the overlap between Ti-(d) and S-(p) orbitals. The electronic transport calculations show a large anisotropy in electrical conductivity and thermopower, which is due to the difference in the effective masses along the in-plane and out-of-plane directions. Strain-induced opening of band gap together with changes in dispersion of bands lead to threefold enhancement in thermopower for both p-and n-type TiS2. We further demonstrate that the uniform tensile strain, which enhances the thermoelectric performance, can be achieved by doping TiS2 with larger iso-electronic elements such as Zr or Hf at Ti sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Undoped and Sn-doped WO3 thin films were grown on cleaned glass substrates by chemical spray pyrolysis, using ammonium tungstate (NH4)(2)WO4 as the host precursor and tin chloride (SnCl4 center dot 5H(2)O) as the source of dopant. The XRD spectra confirm the monoclinic structure with a sharp narrow peak along (200) direction along with other peaks of low relative intensities for all the samples. On Sn doping, the films exhibit reduced crystallinity relative to the undoped film. The standard deviation for relative peak intensity with dopant concentration shows enhancement in heterogeneous nucleation growth. As evident from SEM images, on Sn doping, appearance of island-like structure (i.e., cluster of primary crystallites at few places) takes place. The transmittance has been found to decrease in all the Sn-doped films. The optical band gap has been calculated for both direct and indirect transitions. On Sn doping, the direct band gap shows a red shift and becomes 2.89 eV at 2 at.% doping. Two distinct peaks, one blue emission at 408 nm and other green emission at 533 nm, have been found in the PL spectra. Electrical conductivity has been found to increase with Sn doping.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of indium tin oxide (ITO) layers over vertically aligned zinc oxide nanorods (ZnO NRs) has been investigated to consider ITO nanolayers as transparent conducting oxide electrodes (TCOE) for hierarchical heteronanostructure solar cell devices that have ZnO nanostructures as branches. ZnO/ITO core/shell nanostructures were prepared in two- steps using vapor-liquid-solid and evaporation processes, and further the structures were annealed at various temperatures. Transmission electron microscopic studies show that the as-grown ZnO/ITO structures consist of an amorphous ITO shell on single crystalline ZnO cores, whereas the structures annealed above 300 degrees C consist of a single crystalline ITO shell. ITO layer deposited ZnO NRs exhibit a small red-shift in ZnO near-band-edge emission as well as optical band gap. The electrical measurements carried out on single ZnO/ITO core/shell NR under dark and UV light showed excellent thermionic transport properties. From these investigations it is emphasized that ITO nanolayers could be used as TCO electrodes for prototype ZnO based hierarchical solar cell devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 degrees C shows better crystallinity with the rocking curve FWHM 0.67 degrees and 0.85 degrees along 0 0 0 1] and 1 - 1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room temperature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Codoping with Cu and Mo is shown to have a synergistic effect on the photocatalytic activity of TiO2. The enhancement in activity is observed only if the synthesis route results in TiO2 in which (Cu, Mo) codopants are forced into the TiO2 lattice. Using X-ray photoelectron spectroscopy, Cu and Mo are shown to be present in the +2 and +6 oxidation states, respectively. A systematic study of the ternary system shows that TiO2 containing 6 mol % CuO and 1.5 mol % MoO3 is the most active ternary composition. Ab initio calculations show that codoping of TiO2 using (Mo, Cu) introduces levels above the valence band, and below the conduction band, resulting in a significant reduction in the band gap (similar to 0.8 eV). However, codoping also introduces deep defect states, which can have a deleterious impact on photoactivity. This helps rationalize the narrow compositional window over which the enhancement in photocatalytic activity is observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phase InGaN was found to be similar to 2.48 eV: The current-voltage (I-V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log-log plot of the I-V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150 degrees C and then to a stable hexagonal structure at high temperatures (>= 250 degrees C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)(1-x)Se-x thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150 degrees C. The intermediate NaCl structure has been observed only for x, 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)(1-x)Se-x films are better candidates for phase change memory applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T') and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structureproperty relation due to the rich band structure of MoS2. Remarkably, the metastable 1T'-MoS2 metallic state remains invariant with pressure, with the J(2), A(1g), and E(2)g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphorene, a two-dimensional analog of black phosphorous, has been a subject of immense interest recently, due to its high carrier mobilities and a tunable bandgap. So far, tunability has been predicted to be obtained with very high compressive/tensile in-plane strains, and vertical electric field, which are difficult to achieve experimentally. Here, we show using density functional theory based calculations the possibility of tuning electronic properties by applying normal compressive strain in bilayer phosphorene. A complete and fully reversible semiconductor to metal transition has been observed at similar to 13.35% strain, which can be easily realized experimentally. Furthermore, a direct to indirect bandgap transition has also been observed at similar to 3% strain, which is a signature of unique band-gap modulation pattern in this material. The absence of negative frequencies in phonon spectra as a function of strain demonstrates the structural integrity of the sheets at relatively higher strain range. The carrier mobilities and effective masses also do not change significantly as a function of strain, keeping the transport properties nearly unchanged. This inherent ease of tunability of electronic properties without affecting the excellent transport properties of phosphorene sheets is expected to pave way for further fundamental research leading to phosphorene-based multi-physics devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cubic ZrO2: Fe3+ (0.5-4 mol%) nanoparticles (NPs) were synthesized via bin-inspired, inexpensive and simple route using Phyllanthus acidus as fuel. PXRD, SEM, TEM, FTIR, UV absorption and PL studies were performed to ascertain the formation of NPs. Rietveld analysis confirmed the formation of cubic structure. The influence of Fe3+ on the structure, morphology, UV absorption, PL emission and photocatalytic activity of NPs were investigated. The CIE chromaticity coordinates (0.36, 0.41) show that NPs could be a promising candidate for white LEDs. The influence of Fe3+ on ZrO2 matrix for photocatalytic degradation of AO7 was evaluated under UVA and Sunlight irradiation. The enhanced photocatalytic activity of spherical shaped ZrO2: Fe3+ (2 mol%) under UVA light was attributed to dopant concentration, crystallite size, narrow band gap, textural properties and capability for reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers were followed the order SO42- > Cl- > C2H5OH > HCO3- > CO32-. The recycling catalytic ability of the ZrO2: Fe3+ (2 mol%) was also evaluated with a negligible decrease in the degradation efficiency even after the sixth successive run. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photo-induced effects of Ge12Sb25S63 films illuminated with 532 nm laser light are investigated from transmission spectra measured by FTIR spectroscopy. The material exhibits photo-bleaching (PB) when exposed to band gap light for a prolonged time in a vacuum. The PB is ascribed to structural changes inside the film as well as surface photooxidation. The amorphous nature of thin films was detected by x-ray diffraction. The chemical composition of the deposited thin films was examined by energy dispersive x-ray analysis (EDAX). The refractive indices of the films were obtained from the transmission spectra based on an inverse synthesis method and the optical band gaps were derived from optical absorption spectra using the Tauc plot. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. It was found that the mechanism of the optical absorption follows the rule of the allowed non-direct transition. Raman and x-ray photoelectron spectra (XPS) were measured and decomposed into several peaks that correspond to the different structural units which support the optical changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the synthesis of Eu3+-activated SrMoO4 phosphors by the facile nitrate-citrate gel combustion method. Powder XRD and Rietveld refinement data confirmed that these phosphors have a monophasic scheelite-type tetragonal structure with space group I4(1)/a (No. 88). FESEM micrographs indicate the agglomerated spherical particles. FTIR spectra showed four stretching and bending vibrational modes (2A(u) and 2E(u)). UV-Visible absorption spectroscopy illustrated that the optical band gap energy (E-g) values increase with increase in Eu3+ concentration. The host SrMoO4 phosphor exhibited an intense blue emission under UV excitation (368 nm). The Eu3+-activated SrMoO4 phosphors revealed characteristic luminescence due to Eu3+ ion corresponding to D-5(1) -> F-7(J) (J = 1,2) and D-5(0) -> F-7(J) (J = 1,2,3,4) transitions upon 465 nm excitation. The electric dipole transition located at 615 nm (D-5(0) -> F-7(2)) was stronger than the magnetic dipole transition located at 592 nm (D-5(0) -> F-7(1)). Intensity parameters (Omega(2), Omega(4)) and radiative properties such as transition probabilities (A(T)), radiative lifetime (tau(rad)) and branching ratio (beta) of Eu3+-activated SrMoO4 phosphors were calculated using the Judd-Ofelt theory. Based on the CIE chromaticity diagram, these phosphors can be promising materials for the development of blue and orange-red component in white LEDs. (C) 2015 Elsevier B.V. All rights reserved.