267 resultados para POLYCRYSTALLINE MICROSTRUCTURES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development towards the combination of miniaturization and improved functionality of RFIC has been stalled due to the lack of high-performance integrated inductors. To meet this challenge, integration of magnetic material with high permeability as well as low conductivity is a must. Ferrite films are excellent candidates for RF devices due to their low cost, high resistivity, and low eddy current losses. Unlike its bulk counterpart, nanocrystalline zinc ferrite, because of partial inversion in the spinel structure, exhibits novel magnetic properties suitable for RF applications. However, most scalable ferrite film deposition processes require either high temperature or expensive equipment or both. We report a novel low temperature (< 200 degrees C) solution-based deposition process for obtaining high quality, polycrystalline zinc ferrite thin films (ZFTF) on Si (100) and on CMOS-foundry-fabricated spiral inductor structures, rapidly, using safe solvents and precursors. An enhancement of up to 20% at 5 GHz in the inductance of a fabricated device was achieved due to the deposited ZFTF. Substantial inductance enhancement requires sufficiently thick films and our reported process is capable of depositing smooth, uniform films as thick as similar to 20 mu m just by altering the solution composition. The method is capable of depositing film conformally on a surface with complex geometry. As it requires neither a vacuum system nor any post-deposition processing, the method reported here has a low thermal budget, making it compatible with modern CMOS process flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solidification pathways of Nb rich Nb-Si alloys when processed under non-equilibrium conditions require understanding. Continuing with our earlier work on alloying additions in single eutectic composition 1,2], we report a detailed characterization of the microstructures of Nb-Si binary alloys with wide composition range (10-25 at% Si). The alloys are processed using chilled copper mould suction casting. This has allowed us to correlate the evolution of microstructure and phases with different possible solidification pathways. Finally these are correlated with mechanical properties through studies on deformation using mechanical testing under indentation and compressive loads. It is shown that microstructure modification can significantly influence the plasticity of these alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline tin sulfide thin films were prepared by thermal evaporation technique. The films grown at substrate temperature of 300 degrees C had an orthorhombic crystal structure with strong preferred orientation along (111) plane. Electrical resistivity of the deposited films was about 32.5 Omega cm with a direct optical band gap of 1.33 eV. Carrier concentration and mobility of charge carriers estimated from the Hall measurement were found to be 6.24 x 10(15) cm(-3) and 30.7 cm(2)V(-1) s(-1) respectively. Heterojunction solar cells were fabricated in superstrate configuration using thermally evaporated SnS as an absorber layer and CdS, In: CdS as window layer. The resistivity of pure CdS thin film of a thickness of 320 nm was about 1-2 Omega cm and was reduced to 40 x 10(-3) Omega cm upon indium doping. The fabricated solar cells were characterized using solar simulator. The solar cells with indium doped CdS window layer showed improved performance as compared to pure CdS window layer. The best device had a conversion efficiency of 0.4% and a fill factor of 33.5%. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline Ni-Zn ferrites with a well-defined composition of Ni0.4Zn0.6Fe2-xSbxO4 synthesized using sol-gel method. Morphological characterizations on the prepared samples were performed by high resolution transmission electron and field emission scanning electron microscopy. The powders were densified using microwave sintering method. The room temperature complex permittivity (epsilon' and epsilon aEuro(3)) and permeability (mu' and mu aEuro(3)) were measured over a wide frequency range from 1 MHz-1.8 GHz. The real part of permittivity varies as `x' concentration increases and the resonance frequency was observed at much higher frequencies and there is a significant decrease in the loss factor (tan delta). The electrical resistivity and permeability of NiZn ferrites increased with an increase of Sb content. As the concentration of `x' increases from 0 to 0.08 the saturation magnetisation decreases. The saturation magnetization (M-s) a parts per thousand aEuro parts per thousand 52.211 A.m(2)/Kg for x = 0 at room temperature. The room temperature electro paramagnetic resonance (EPR) were studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films are deposited on unheated p-Si (100) and quartz substrates by employing DC reactive magnetron sputtering technique. The effect of post-deposition annealing in air at temperatures in the range 673-973 K on the structural, electrical, and dielectric properties of the films was investigated. The chemical composition of the TiO2 films was analyzed with X-ray photoelectron spectroscopy. The surface morphology of the films was studied by atomic force microscope. The optical band gap of the as-deposited film was 3.50 eV, and it increased to 3.55 eV with the increase in annealing temperature to 773 K. The films annealed at higher temperature of 973 K showed the optical band gap of 3.43 eV. Thin film capacitors were fabricated with the MOS configuration of Al/TiO2/p-Si. The leakage current density of the as-deposited films was 1.2 x 10(-6) A/cm(2), and it decreased to 5.9 x 10(-9) A/cm(2) with the increase in annealing temperature to 973 K. These films showed high dielectric constant value of 36. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium doped zinc oxide (Na:ZnO) thin films were deposited on glass substrates at substrate temperatures 300,400 and 500 degrees C by a novel nebulizer spray method. X-ray diffraction shows that all the films are polycrystalline in nature having hexagonal structure with high preferential orientation along (0 0 2) plane. High resolution SEM studies reveal the formation of Na-doped ZnO films having uniformly distributed nano-rods over the entire surface of the substrates at 400 degrees C. The complex impedance of the ZnO nano-rods shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 170 to 270 degrees C and thereafter slightly increased. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mn0.4Zn0.6Fe2O4 powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 degrees C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz-1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic emission (MAE) activity along hysteresis loop is proportional to the hysteresis losses during the same loop. This law has been verified on series of polycrystalline ferrites and found that the law is valid whatever the composition, the grain size and temperature. It is also found that the domain wall creation/or annihilation processes are the origin of the MAE. (C) 2013 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstructure and texture are known to undergo drastic modifications due to trace hypoeutectic boron addition (similar to 0.1wt.%) for various titanium alloys e.g. Ti-6Al-4V. The deformation behaviour of such an alloy Ti-6Al-4V-0.1B is investigated in the (+) phase field and compared against that of the base alloy Ti-6Al-4V studied under selfsame conditions. The deformation microstructures for the two alloys display bending and kinking of lamellae in near and softening via globularization of lamella in near phase regimes, respectively. The transition temperature at which pure slip based deformation changes to softening is lower for the boron added alloy. The presence of TiB particles is largely held attributable for the early softening of Ti-6Al-4V-0.1B alloy. The compression texture of both the alloys carry signature of pure phase defamation at lower temperature and phase transformation near the transus temperature. Texture is influenced by a complex interplay of the deformation and transformation processes in the intermediate temperature range. The contribution from phase transformation is prominent for Ti-6Al-4V-0.1B alloy at comparatively lower temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis as well as structural and physical properties of the bulk polycrystalline FeTe and FeTe0.5Se0.5 compounds. These samples are synthesised by the solid state-reaction method via vacuum encapsulation. Both studied compounds are crystallized in a tetragonal phase with space group P4/nmm. The parent FeTe compound shows an anomaly in resistivity measurement at around 78 K, which is due to the structural change along with a magnetic phase transition. The superconductivity in the FeTe0.5Se0.5 sample at 13 K is confirmed by the resistivity measurements. DC magnetisation along with an isothermal (M-H) loop shows that FeTe0.5Se0.5 possesses bulk superconductivity. The upper critical field is estimated through resistivity rho (T,H) measurements using Gingzburg-Landau (GL) theory and is above 50 T with 50 % resistivity drop criterion. The origin of the resistive transition broadening under magnetic field is investigated by thermally activated flux flow. The magnetic field dependence of the activation energy of the flux motion is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low cycle fatigue behavior of an O+B2 alloy was evaluated at 650 degrees C in ambient atmosphere under fully reversed total axial strain controlled mode. Three different microstructures, namely equiaxed O plus aged B2 (fine O plates in B2 matrix), lenticular O laths plus aged B2 and a pancake composite microstructure comprising equiaxed alpha 2, lenticular O and aged B2, were selected to study the effect of microstructure on low cycle fatigue behavior in this class of alloys. Distinct well-defined trends were observed in the cyclic stress-strain response curves depending on the microstructure. The cyclic stress response was examined in terms of softening or hardening and correlated with microstructural features and dislocation behavior. Fatigue life was analyzed in terms of standard Coffin-Manson and Basquin plots and for all microstructures a prevailing elastic strain regime was identified, with a single slope for microstructures equiaxed and composite and a double slope for lenticular O laths. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flower-like hierarchical architectures of layered SnS2 have been synthesized ionothermally for the first time, using a water soluble EMIM]BF4 ionic liquid (IL) as the solvent medium. At lower reaction temperatures, the hierarchical structures are formed of few-layered polycrystalline 2D nanosheet-petals composed of randomly oriented nanoparticles of SnS2. The supramolecular networks of the IL serve as templates on which the nanoparticles of SnS2 are glued together by combined effects of hydrogen bonding, electrostatic, hydrophobic and imidazolium stacking interactions of the IL, giving rise to polycrystalline 2D nanosheet-petals. At higher reaction temperatures, single crystalline plate-like nanosheets with well-defined crystallographic facets are obtained due to rapid inter-particle diffusion across the IL. Efficient surface charge screening by the IL favors the aggregation of individual nanosheets to form hierarchical flower-like architectures of SnS2. The mechanistic aspects of the ionothermal bottom-up hierarchical assembly of SnS2 nanosheets are discussed in detail. Li-ion storage properties of the pristine SnS2 samples are examined and the electrochemical performance of the sample synthesized at higher temperatures is found to be comparable to that reported for pristine SnS2 samples in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis and physical property characterization of Prfe(1-x)Co(x)AsO (x=0.0-1.0). The studied samples are synthesized by through the solid state reaction route via the vacuum encapsulation method. The pristine compound PrFeAsO does not show superconductivity, but rather exhibits a metallic step like transition due to spin density wave (SOW) ordering of Fe moments (Fe-SDW) below 150 K, Followed by another upward step due to anomalous ordering of Pr moments (Pr-TN) at 12 K. Both the Fe-SDW and Pr-TN temperatures decrease monotonically with Co substitution at Fe site Superconductivity appears in a narrow range of x from 0.07 to 0.25 with maximum T-c at 11.12 K for x=0.15. Samples with x >= 0.25 exhibit metallic behavior right from 300 K down to 2 K, without any Fe-SDW or Pr-TN steps in resistivity. In fact, though Fe-SDW decreases monotonically, the pr(TN) disappeared even with x=0.02. The magneto transport measurements below 14 Ton superconducting polycrystalline Co doped Pi FeAs0 lead to extrapolated values of the upper critical fields H-c2(0)] of up to 60 T. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ligational behaviour of (E)-2-amino-N'-1-(2-hydroxyphenyl)ethylidene]benzohydrazide (Aheb) towards later 3d metal ionscopper(II), cobalt(II), manganese(II), zinc(II), cadmium(II) and nickel(IV)] has been studied. Their structures have been elucidated on the basis of spectral (IR, H-1 NMR, UV-Vis, EPR and FAB-mass), elemental analyses, conductance measurements, magnetic moments, and thermal studies. During complexation Ni(II) ion has got oxidized to Ni(IV). The changes in the bond parameters of the ligand on complexation has been discussed by comparing the crystal structure of the ligand with that of its Ni(IV) complex. The X-ray single crystal analysis of Ni(aheb)(2)]Cl-2 center dot 4H(2)O has confirmed an octahedral geometry around the metal ion. EPR spectra of the Cu(II) complex in polycrystalline state at room (300 K) and liquid nitrogen temperature (77 K) were recorded and their salient features are reported. (C) 2014 Elsevier B.V. All rights reserved.