236 resultados para PIECEWISE VECTOR FIELDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a detailed direct numerical simulation of statistically steady, homogeneous, isotropic, two-dimensional magnetohydrodynamic turbulence. Our study concentrates on the inverse cascade of the magnetic vector potential. We examine the dependence of the statistical properties of such turbulence on dissipation and friction coefficients. We extend earlier work significantly by calculating fluid and magnetic spectra, probability distribution functions (PDFs) of the velocity, magnetic, vorticity, current, stream-function, and magnetic-vector-potential fields, and their increments. We quantify the deviations of these PDFs from Gaussian ones by computing their flatnesses and hyperflatnesses. We also present PDFs of the Okubo-Weiss parameter, which distinguishes between vortical and extensional flow regions, and its magnetic analog. We show that the hyperflatnesses of PDFs of the increments of the stream function and the magnetic vector potential exhibit significant scale dependence and we examine the implication of this for the multiscaling of structure functions. We compare our results with those of earlier studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the issue of stability of recently proposed significantly super-Chandrasekhar white dwarfs. We present stable solutions of magnetostatic equilibrium models for super-Chandrasekhar white dwarfs pertaining to various magnetic field profiles. This has been obtained by self-consistently including the effects of the magnetic pressure gradient and total magnetic density in a general relativistic framework. We estimate that the maximum stable mass of magnetized white dwarfs could be more than 3 solar mass. This is very useful to explain peculiar, overluminous type Ia supernovae which do not conform to the traditional Chandrasekhar mass-limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum emulation property of the cold atoms has generated a lot of interest in studying systems with synthetic gauge fields. In this article, we describe the physics of two component Fermi gas in the presence of synthetic non-Abelian SU(2) gauge fields. Even for the non-interacting system with the gauge fields, there is an interesting change in the topology of the Fermi surface by tuning only the gauge field strength. When a trapping potential is used in conjunction with the gauge fields, the non-interacting system has the ability to produce novel Hamiltonians and show characteristic change in the density profile of the cloud. Without trap, the gauge fields act as an attractive interaction amplifier and for special kinds of gauge field configurations, there are two-body bound states for any attraction even in three dimensions. For a many body system, the gauge fields can induce a crossover from a weak superfluid to a strong superfluid with transition temperature as high as the Fermi temperature. The superfluid state obtained for a very large gauge field strength is a superfluid of new kind of bosons, called ``rashbons'', the properties of which are independent of its constituent two component fermions and are solely determined by the gauge field strength. We also discuss the collective excitations over the superfluid ground states and the experimental relevance of the physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments using three point bend specimens of Mg single crystals have revealed that tensile twins of {10 (1) over bar2}-type form profusely near a notch tip and enhance the fracture toughness through large plastic dissipation. In this work, 3D finite element simulations of these experiments are carried out using a crystal plasticity framework which includes slip and twinning to gain insights on the mechanics of fracture. The predicted load-displacement curves, slip and tensile twinning activities from finite element analysis corroborate well with the experimental observations. The numerical results are used to explore the 3D nature of the crack tip stress, plastic slip and twin volume fraction distributions near the notch root. The occurrence of tensile twinning is rationalized from the variation of normal stress ahead of the notch tip. Further, deflection of the crack path at twin-twin intersections observed in the experiments is examined from an energy standpoint by modeling discrete twins close to the notch root.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DC capacitor is an important component in a voltage source inverter.The RMS current flowing through the capacitor determines the capacitor size and losses. The losses, in turn, influence the capacitor life. This paper proposes a space vector based modulation strategy for reducing the capacitor RMS current in a three-level diode-clamped inverter. An analytical closed-form expression is derived for the DC capacitor RMS current with the proposed PWM strategy. The analytical expression is validated through simulations and also experimentally. Theoretical and experimental results are presented, comparing the proposed strategy with conventional space vector PWM (CSVPWM). It is shown that the proposed strategy reduces the capacitor RMS current significantly at high modulation indices and high power factors. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complexity in visualizing volumetric data often limits the scope of direct exploration of scalar fields. Isocontour extraction is a popular method for exploring scalar fields because of its simplicity in presenting features in the data. In this paper, we present a novel representation of contours with the aim of studying the similarity relationship between the contours. The representation maps contours to points in a high-dimensional transformation-invariant descriptor space. We leverage the power of this representation to design a clustering based algorithm for detecting symmetric regions in a scalar field. Symmetry detection is a challenging problem because it demands both segmentation of the data and identification of transformation invariant segments. While the former task can be addressed using topological analysis of scalar fields, the latter requires geometry based solutions. Our approach combines the two by utilizing the contour tree for segmenting the data and the descriptor space for determining transformation invariance. We discuss two applications, query driven exploration and asymmetry visualization, that demonstrate the effectiveness of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop new techniques to efficiently evaluate heat kernel coefficients for the Laplacian in the short-time expansion on spheres and hyperboloids with conical singularities. We then apply these techniques to explicitly compute the logarithmic contribution to black hole entropy from an N = 4 vector multiplet about a Z(N) orbifold of the near-horizon geometry of quarter-BPS black holes in N = 4 supergravity. We find that this vanishes, matching perfectly with the prediction from the microstate counting. We also discuss possible generalisations of our heat kernel results to higher-spin fields over ZN orbifolds of higher-dimensional spheres and hyperboloids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Special switching sequences involving division of active state time are used in space-vector-based generation of pulse width modulation (PWM) waveforms. This paper proposes a hybrid PWM technique which is a combination of the conventional and special switching sequences. The proposed hybrid PWM technique reduces the peak-to-peak torque ripple at high speeds of an induction motor drive. Supporting simulation and experimental results are presented from a closed-loop controlled motor drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an enhanced actuation in bulk carbon nanotubes (CNTs) under coupled electric and magnetic fields, which is much higher than that evaluated in the presence of individual fields. Coupled electric and magnetic fields induce a directional actuation demonstrating a transformation from polarity independent to dependent actuation behavior of CNTs. Both qualitative and quantitative analyses are performed to understand this transformation in the bulk CNTs. Moreover, actuations along radial and axial directions of CNTs have also demonstrated a similar directional behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental procedure to determine the acoustic and vibration behavior of an inverter-fed induction motor based on measurements of the current spectrum, acoustic noise spectrum, overall noise in dB, and overall A-weighted noise in dBA. Measurements are carried out on space-vector modulated 8-hp and 3-hp induction motor drives over a range of carrier frequencies at different modulation frequencies. The experimental data help to distinguish between regions of high and low acoustic noise levels. The measurements also bring out the impact of carrier frequency on the acoustic noise. The sensitivity of the overall noise to carrier frequency is indicative of the relative dominance of the high-frequency electromagnetic noise over mechanical and aerodynamic components of noise. Based on the measured current and acoustic noise spectra, the ratio of dynamic deflection on the stator surface to the product of fundamental and harmonic current amplitudes is obtained at each operating point. The variation of this ratio of deflection to current product with carrier frequency indicates the resonant frequency clearly and also gives a measure of the amplification of vibration at frequencies close to the resonant frequency. This ratio is useful to predict the magnitude of acoustic noise corresponding to significant time-harmonic currents flowing in the stator winding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of hydromagnetic perturbations in a small section of accretion disks. It is known that molecular viscosity is negligible in accretion disks. Hence, it has been argued that a mechanism, known as magnetorotational instability (MRI), is responsible for transporting matter in the presence of a weak magnetic field. However, there are some shortcomings, which question the effectiveness of MRI. Now the question arises, whether other hydromagnetic effects, e.g., transient growth (TG), can play an important role in bringing nonlinearity into the system, even at weak magnetic fields. In addition, it should be determined whether MRI or TG is primarily responsible for revealing nonlinearity in order to make the flow turbulent. Our results prove explicitly that the flows with a high Reynolds number (Re), which is the case for realistic astrophysical accretion disks, exhibit nonlinearity via TG of perturbation modes faster than that by modes producing MRI. For a fixed wave vector, MRI dominates over transient effects only at low Re, lower than the value expected to be in astrophysical accretion disks, and low magnetic fields. This calls into serious question the (overall) persuasiveness of MRI in astrophysical accretion disks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a technique to suppress low-order harmonics for an open-end winding induction motor drive for a full modulation range. One side of the machine is connected to a main inverter with a dc power supply, whereas the other inverter is connected to a capacitor from the other side. Harmonic suppression (with complete elimination of fifth- and seventh-order harmonics) is achieved by realizing dodecagonal space vectors using a combined pulsewidth modulation (PWM) control for the two inverters. The floating capacitor voltage is inherently controlled during the PWM operation. The proposed PWM technique is shown to be valid for the entire modulation range, including overmodulation and six-step mode of operation of the main inverter. Experimental results have been presented to validate the proposed technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the central dogmas of fluid physics is the no-slip boundary condition, whose validity has come under scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective viscosity experienced by polymeric nano colloids moving through a highly viscous and confined polymer, well above its glass transition temperature. The extent of reduction in effective interface viscosity increases with decreasing temperature and polymer film thickness. Concomitant with the reduction in effective viscosity we also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these colloids with an anomalous power law exponent of similar to 2 at the lowest temperatures and film thickness studied. Such strong hydrodynamic interactions are not expected for polymeric colloidal motion in polymer melts. We suggest hydrodynamics, especially slip present at the colloid-polymer interface which determines the observed reduction in interface viscosity and presence of strong hydrodynamic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a multilevel dodecagonal voltage space vector structure with nineteen concentric dodecagons is proposed for the first time. This space vector structure is achieved by cascading two sets of asymmetric three-level inverters with isolated H-bridges on either side of an open-end winding induction motor. The dodecagonal structure is made possible by proper selection of dc link voltages and switching states of the inverters. The proposed scheme retains all the advantages of multilevel topologies as well as the advantages of dodecagonal voltage space vector structure. In addition to that, a generic and simple method for calculation of pulsewidth modulation timings using only sampled reference values (v(alpha) and v(beta)) is proposed. This enables the scheme to be used for any closed-loop application such as vector control. In addition, a new method of switching technique is proposed, which ensures minimum switching while eliminating the fifth-and seventh-order harmonics and suppressing the eleventh and thirteenth harmonics, eliminating the need for bulky filters. The motor phase voltage is a 24-stepped wave-form for the entire modulation range thereby reducing the number of switchings of the individual inverter modules. Experimental results for steady-state operation, transient operation, including start-up have been presented and the results of fast Fourier transform analysis is also presented for validating the proposed concept.