276 resultados para Ozone layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the thermoelectric (TE) figure-of-merit of a single-layer graphene (SLG) sheet by a physics-based analytical technique. We first develop analytical models of electrical and thermal resistances and the Seebeck coefficient of SLG by considering electron interactions with the in-plane and flexural phonons. Using those models, we show that both the figure-of-merit and the TE efficiency can be substantially increased with the addition of isotope doping as it significantly reduces the phonon-dominated thermal conductivity. In addition, we report that the TE open circuit output voltage and output power depends weakly on the SLG sheet dimensions and sheet concentration in the strongly diffusive regime. Proposed models agree well with the available experimental data and demonstrate the immense potential of graphene for waste-heat recovery application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a rigidity percolation transition and the onset of yield stress in a dilute aqueous dispersion of graphene oxide platelets (aspect ratio similar to 5000) above a critical volume fraction of 3.75 x 10(-4) with a percolation exponent of 2.4 +/- 0.1. The viscoelastic moduli of the gel at rest measured as a function of time indicate the absence of structural evolution of the 3D percolated network of disks. However a shear-induced aging giving rise to a compact jammed state and shear rejuvenation indicating a homogenous flow is observed when a steady shear stress (sigma) is imposed in creep experiments. We construct a shear diagram (sigma vs. volume fraction phi) and the critical stress above which shear rejuvenation occurs is identified as the yield stress sigma(y) of the gel. The minimum steady state shear rate (gamma) over dot(m) obtained from creep experiments agrees well with the end of the plateau region in a controlled shear rate flow curve, indicating a shear localization below (gamma) over dot(m). A steady state shear banding in the plateau region of the flow curve observed in particle velocimetry measurements in a Couette geometry confirms that the dilute suspensions of GO platelets form a thixotropic yield stress fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a physics-based analytical model of electric-field-dependent electron mobility (mu) in a single-layer graphene sheet using the formulation of Landauer and Mc Kelvey's carrier flux approach under finite temperature and quasi-ballistic regime. The energy-dependent, near-elastic scattering rate of in-plane and out-of-plane (flexural) phonons with the electrons are considered to estimate mu over a wide range of temperature. We also demonstrate the variation of mu with carrier concentration as well as the longitudinal electric field. We find that at high electric field (>10(6) Vm(-1)), the mobility falls sharply, exhibiting the scattering between the electrons and flexural phonons. We also note here that under quasi-ballistic transport, the mobility tends to a constant value at low temperature, rather than in between T-2 and T-1 in strongly diffusive regime. Our analytical results agree well with the available experimental data, while the methodologies are put forward to estimate the other carrier-transmission-dependent transport properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a Physical layer Network Coding (PNC) scheme for the K-user wireless Multiple Access Relay Channel, in which K source nodes want to transmit messages to a destination node D with the help of a relay node R. The proposed scheme involves (i) Phase 1 during which the source nodes alone transmit and (ii) Phase 2 during which the source nodes and the relay node transmit. At the end of Phase 1, the relay node decodes the messages of the source nodes and during Phase 2 transmits a many-to-one function of the decoded messages. To counter the error propagation from the relay node, we propose a novel decoder which takes into account the possibility of error events at R. It is shown that if certain parameters are chosen properly and if the network coding map used at R forms a Latin Hypercube, the proposed decoder offers the maximum diversity order of two. Also, it is shown that for a proper choice of the parameters, the proposed decoder admits fast decoding, with the same decoding complexity order as that of the reference scheme based on Complex Field Network Coding (CFNC). Simulation results indicate that the proposed PNC scheme offers a large gain over the CFNC scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion implantation experiments were carried out on amorphous (30 K) and crystalline (80 K) solid CO2 using both reactive (D+, H+) and non-reactive (He+) ions, simulating different irradiation environments on satellite and dust grain surfaces. Such ion irradiation synthesized several new species in the ice including ozone (O-3), carbon trioxide (CO3), and carbon monoxide (CO) the main dissociation product of carbon dioxide. The yield of these products was found to be strongly dependent upon the ion used for irradiation and the sample temperature. Ion implantation changes the chemical composition of the ice with recorded infrared spectra clearly showing the coexistence of D-3h and C-2v isomers of CO3, for the first time, in ion irradiated CO2 ice. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study demonstrates a method to deliver hydrophobic drugs by incorporation into thin films and microcapsules fabricated via a layer-by-layer assembly approach. The hydrophobic molecule binding properties of albumin have been exploited for solubilization of a water-insoluble molecule, pyrene (model drug), by preparation of non-covalent conjugates with bovine serum albumin (BSA). Conjugation with BSA renders a highly negative zeta potential to the previously uncharged pyrene which favors the assembly formation by electrostatic interaction with a positively charged polyelectrolyte, chitosan (at acidic pH). The growth of the assembly was followed by monitoring pyrene absorbance with successive layer deposition. The thin film assembly was demonstrated to be capable of releasing its hydrophobic cargo under physiological conditions. We demonstrated the applicability of this approach by encapsulating a water-insoluble drug, curcumin. These assemblies were further loaded with the anti-cancer drug Doxorubicin. Biocompatible calcium carbonate microparticles were used for capsule preparation. The porous nature of the microparticles allows for the pre-encapsulation of therapeutic macromolecules like protein. The fabrication of protein encapsulated stable microcapsules with hydrophobic molecules incorporated into the shell of the microcapsules has been demonstrated. The microcapsules were further capable of loading hydrophilic molecules like Rhodamine B. Thus, using the approach described, a multi-agent carrier for hydrophobic and hydrophilic drugs as well as therapeutic macromolecules can be envisioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bentonite clays are proven to be attractive as buffer and backfill material in high-level nuclear waste repositories around the world. A quick estimation of swelling pressures of the compacted bentonites for different clay-water-electrolyte interactions is essential in the design of buffer and backfill materials. The theoretical studies on the swelling behavior of bentonites are based on diffuse double layer (DDL) theory. To establish theoretical relationship between void ratio and swelling pressure (e versus P), evaluation of elliptic integral and inverse analysis are unavoidable. In this paper, a novel procedure is presented to establish theoretical relationship of e versus P based on the Gouy-Chapman method. The proposed procedure establishes a unique relationship between electric potentials of interacting and non-interacting diffuse clay-water-electrolyte systems. A procedure is, thus, proposed to deduce the relation between swelling pressures and void ratio from the established relation between electric potentials. This approach is simple and alleviates the need for elliptic integral evaluation and also the inverse analysis. Further, application of the proposed approach to estimate swelling pressures of four compacted bentonites, for example, MX 80, Febex, Montigel and Kunigel V1, at different dry densities, shows that the method is very simple and predicts solutions with very good accuracy. Moreover, the proposed procedure provides continuous distributions of e versus P and thus it is computationally efficient when compared with the existing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the two-component random phase approximation, we report the collective mode spectrum of a quasi-one-dimensional spatially separated electron-hole double-layer system characterized by rolled-up type-II band aligned quantum wells. We find two intra-subband collective excitations, which can be classified into optic and acoustic plasmon branches, and several inter-subband plasmon modes. At the long wavelength limit and up to a given wave vector, our model predicts and admits an undamped acoustic branch, which always lies in the gap between the intra-subband electron and hole continua, and an undamped optic branch residing within the gap between the inter-subband electron and hole continua, for all values of the electron-hole charge separations. This theoretical investigation suggests that the low-energy and Landau-undamped plasmon modes might exist based on quasi-one-dimensional, two-component spatially separated electron-hole plasmas, and their possibility could be experimentally examined. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure of few-layer MoS2, WS2 and MoSe2 to high-temperature shock waves causes morphological changes and a significant decrease in the interlayer separation between the (002) planes, the decrease being greatest in MoSe2. Raman spectra show softening of both the A(1g) and the E-2g(1) modes initially, followed by a slightly stiffening. Using first-principles density functional theoretical analysis of the response of few-layer MoS2 to shock waves, we propose that a combination of shear and uniaxial compressive deformation leads to flattening of MoS2 sheets which is responsible for the changes in the vibrational spectra. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanosheets of MoO3 that consist of only a few layers have been prepared by using four methods, including the oxidation of MoS2 nanosheets, intercalation with LiBr, and ultrasonication. These nanosheets have been characterized by atomic force microscopy and other techniques. Besides showing a blue-shift of the optical absorption band compared to the bulk sample, few-layer MoO3 exhibits enhanced photocatalytic activity. In combination with a borocarbonitride, few-layer MoO3 shows good performance characteristics as a supercapacitor electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the design of modulation schemes for the physical layer network-coded two way relaying scenario with two phases (Multiple access (MA) Phase and Broadcast (BC) Phase), it was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of multiple access interference and all these network coding maps should satisfy a requirement called the exclusive law. In [11] the case in which the end nodes use M-PSK signal sets is extensively studied using Latin Squares. This paper deals with the case in which the end nodes use square M-QAM signal sets. In a fading scenario, for certain channel conditions, termed singular fade states, the MA phase performance is greatly reduced. We show that the square QAM signal sets lead to lesser number of singular fade states compared to PSK signal sets. Because of this, the complexity at the relay is enormously reduced. Moreover lesser number of overhead bits are required in the BC phase. We find the number of singular fade states for PAM and QAM signal sets used at the end nodes. The fade state γejθ = 1 is a singular fade state for M-QAM for all values of M and it is shown that certain block circulant Latin Squares remove this singular fade state. Simulation results are presented to show that QAM signal set perform better than PSK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ impedance spectroscopy of layer-by-layer self-assembly of weak polyelectrolytes is presented. Interdigitated capacitors with active area of 1×1 mm2 and electrode spacing of 5 μm are fabricated and used for this purpose. Measurement results indicate that the impedance decreases with increase in number of polyelectrolyte layers. About 2.5% of relative change in magnitude of impedance at 104.7 KHz is seen for four bi-layers of Poly(Allylamine Hydrochloride) (PAH)/Poly(Acrylic acid) (PAA). An electrical equivalent for polyelectrolyte binding is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of bovine serum albumin (BSA) nanoparticles are fabricated via layer-by-layer assembly. The surface of BSA nanoparticles have two oppositely acting functional groups on the surface: amine (NH2) and carboxylate (COO-). The protonation and deprotonation of these functional groups at different pH vary the charge density on the particle surface, and entirely different growth can be observed by varying the nature of the complementary polymer and the pH of the particles. The complementary polymers used in this study are poly(dimethyldiallylammonium chloride) (PDDAC) and poly(acrylic acid) (PAA). The assembly of BSA nanoparticles based on electrostatic interaction with PDDAC suffers from the poor loading of the nanoparticles. The assembly with PAA aided by a hydrogen bonding interaction shows tremendous improvement in the growth of the assembly over PDDAC. Moreover, the pH of the BSA nanoparticles was observed to affect the loading of nanoparticles in the LbL assembly with PAA significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.