247 resultados para Organic wastes -- Recycling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermolecular interactions and structural features in crystals of seven halogenated N-benzylideneanilines (Schiff bases), all of which exhibit remarkable flexibility, were examined to identify the common packing features that are the raison d'etre for the observed elasticity. The following two features, in part related, were identified as essential to obtain elastic organic crystals: 1)A multitude of weak and dispersive interactions, including halogen bonds, which may act as structural buffers for deformation through easy rupture and reformation during bending; and 2)corrugated packing patterns that would get interlocked and, in the process, prevent long-range sliding of molecular planes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, amino-silane modified layered organosilicates were used to reinforce cyclic olefin copolymer to enhance the thermal, mechanical and moisture impermeable barrier properties. The optimum clay loading (4%) in the nanocomposite increases the thermal stability of the film while further loading decreases film stability. Water absorption behavior at 62 degrees C was carried out and compared with the behavior at room temperature and 48 degrees C. The stiffness of the matrix increases with clay content and the recorded strain to failure for the composite films was lower than the neat film. Dynamic mechanical analysis show higher storage modulus and low loss modulus for 2.5-4 wt% clay loading. Calcium degradation test and device encapsulation also show the evidence of optimum clay loading of 4 wt% for improved low water vapor transmission rates compared to other nanocomposite films. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we report a facile and effective method to enhance the photocatalytic activity of bismuth oxybromide (BiOBr) semiconductor through the fabrication of heterojunction with Ag3PO4. The as synthesized Ag3PO4/BiOBr microspheres were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and UV-vis diffuse reflectance spectroscopy (DRS). The new Ag3PO4/BiOBr heterojunctions exhibited wide absorption in the visible-light region and compared to pure BiOBr and Ag3PO4 samples displayed exceptionally high photocatalytic activity for the degradation of typical organic pollutants such as Rhodamine B (RhB) and phenol. The optimal Ag/Bi weight ratio in Ag3PO4/BiOBr microsphere (AB7) was found to be 0.7. The enhanced photocatalytic activity was related to the efficient separation of electron-hole pairs derived from matching band potentials between BiOBr and Ag3PO4 which results into the generation of natural energy bias at heterojunction and subsequent transfer of photoinduced charge carriers. Moreover, the synthesized samples exhibited almost no loss of activity even after 6 recycling runs indicating their high photocatalytic stability. Considering the facile and environment friendly route for the synthesis of Ag3PO4/BiOBr hybrids with enhanced visible-light induced photocatalytic activity, it is possible to widely apply these hybrids in various fields such as waste water treatment. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective formation of a single isomer of a 3+2] self-assembled organic cage from a reaction mixture of an unsymmetrical aldehyde and a flexible amine is discussed. The experimental and theoretical findings suggest that in such a process, the geometric features of the aldehyde play a key role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A silver ion (Ag+)-triggered thixotropic metallo(organo)gel of p-pyridyl-appended oligo(p-phenylenevinylene) derivatives (OPVs) is reported for the first time. Solubilization of single-walled carbon nanohorns (SWCNHs) in solutions of the pure OPVs as well as in the metallogels mediated by pi-pi interactions has also been achieved. In situ fabrication of silver nanoparticles (AgNPs) in the SWCNH-doped dihybrid gel leads to the formation of a trihybrid metallogel. The mechanical strength of the metallogels could be increased step- wise in the order: freshly prepared gel organic particles (NMOPs), flowerlike aggregates of SWCNHs and AgNPs, and also their integration with each other. Detailed studies suggest lamellar organizations of the linear metal ligand complexes in the NMOPs, which upon association create a three-dimensional network that eventually immobilizes the solvent molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reactive polymer nanocomposite system was proposed as an effective water vapor barrier material for organic device encapsulation. Nanosized magnesium oxide (MgO) was synthesized by the solution combustion technique using two different fuels, lactose and alanine. The purity and crystallite size of MgO were determined from X-ray diffraction studies. The surface areas and porosity measurements were used to determine the water adsorption capacities of MgO. Nanocomposites with various concentrations (wt% = 0.25, 0.5, 1 and 2.5) of MgO were prepared using Surlyn as the base polymer. The permeation rate of moisture through the fabricated films was calculated using calcium degradation test and these rates were further used to calculate the diffusivities. Accelerated aging experiments were conducted to study the performance of organic photovoltaic devices encapsulated with synthesized films under accelerated weathering conditions. The performance of the barrier materials with synthesized MgO was also compared to that obtained with commercial MgO. The films containing MgO obtained from lactose exhibited better barrier properties compared to other films made with commercial MgO and MgO synthesized using alanine as well as other nanocomposites reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new synthetic protocol based on one-pot, copper(I)-catalysed multicomponent reaction of formaldehyde, secondary amine and terminal alkyne has been employed to postsynthetically modify a self-assembled nanoscopic organic cage. By employing this synthetic strategy, three new cages appended with phenyl-, xylyl-and naphthyl-acetylene moieties have been synthesised. The resulting modified cages were characterised by using a range of spectroscopic techniques. The synthesised cages were fluorescent and thus one of them was tested to explore the potential use of such compounds as chemosensors for the detection of nitroaromatics. Experimental findings suggest a high selective quenching of initial fluorescence intensity in the presence of nitroaromatic compounds. Furthermore, it has been observed that among the various nitroaromatics tested, nitrophenolic compounds have better quenching ability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To harvest solar energy more efficiently, novel Ag2S/Bi2WO6 heterojunctions were synthesized by a hydrothermal route. This novel photocatalyst was synthesized by impregnating Ag2S into a Bi2WO6 semiconductor by a hydrothermal route without any surfactants or templates. The as prepared structures were characterized by multiple techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmet-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), UV-vis diffuse reflection spectroscopy (DRS) and photoluminescence (PL). The characterization results suggest mesoporous hierarchical spherical structures with a high surface area and improved photo response in the visible spectrum. Compared to bare Bi2WO6, Ag2S/Bi2WO6 exhibited much higher photocatalytic activity towards the degradation of dye Rhodamine B (RhB). Although silver based catalysts are easily eroded by photogenerated holes, the Ag2S/Bi2WO6 photocatalyst was found to be highly stable in the cyclic experiments. Based on the results of BET, Pl and DRS analysis, two possible reasons have been proposed for the enhanced visible light activity and stability of this novel photocatalyst: (1) broadening of the photoabsorption range and (2) efficient separation of photoinduced charge carriers which does not allow the photoexcited electrons to accumulate on the conduction band of Ag2S and hence prevents the photocorrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium is an effective mood stabilizer but its use is associated with many side effects. Electrophysiological recordings of miniature excitatory postsynaptic currents (mEPSCs) mediated by glutamate receptor AMPA-subtype (AMPARs) in hippocampal pyramidal neurons revealed that CLi (therapeutic concentration of 1 mM lithium, from days in vitro 4-10) decreased the mean amplitude and mean rectification index (RI) of AMPAR mEPSCs. Lowered mean RI indicate that contribution of Ca2+-permeable AMPARs in synaptic events is higher in CLi neurons (supported by experiments sensitive to Ca2+-permeable AMPAR modulation). Co-inhibiting PKA, GSK-3 beta and glutamate reuptake was necessary to bring about changes in AMPAR mEPSCs similar to that seen in CLi neurons. FM1-43 experiments revealed that recycling pool size was affected in CLi cultures. Results from minimum loading, chlorpromazine treatment and hyperosmotic treatment experiments indicate that endocytosis in CLi is affected while not much difference is seen in modes of exocytosis. CLi cultures did not show the high KCl associated presynaptic potentiation observed in control cultures. This study, by calling attention to long-term lithium-exposure-induced synaptic changes, might have implications in understanding the side effects such as CNS complications occurring in perinatally exposed babies and cognitive dulling seen in patients on lithium treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hermansky-Pudlak syndrome (HPS) is a group of disorders characterized by the malformation of lysosome-related organelles, such as pigment cell melanosomes. Three of nine characterized HPS subtypes result from mutations in subunits of BLOC-2, a protein complex with no known molecular function. In this paper, we exploit melanocytes from mouse HPS models to place BLOC-2 within a cargo transport pathway from recycling endosomal domains to maturing melanosomes. In BLOC-2-deficient melanocytes, the melanosomal protein TYRP1 was largely depleted from pigment granules and underwent accelerated recycling from endosomes to the plasma membrane and to the Golgi. By live-cell imaging, recycling endosomal tubules of wild-type melanocytes made frequent and prolonged contacts with maturing melanosomes; in contrast, tubules from BLOC-2-deficient cells were shorter in length and made fewer, more transient contacts with melanosomes. These results support a model in which BLOC-2 functions to direct recycling endosomal tubular transport intermediates to maturing melanosomes and thereby promote cargo delivery and optimal pigmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature and photo-dependent current-voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT: PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler-Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (similar to 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Phi(B) approximate to 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rare examples of intramolecular hydrogen bonds (HB) of the type the N-H center dot center dot center dot F-C, detected in a low polarity solvent in the derivatives of hydrazides, by utilizing one and two-dimensional solution state multinuclear NMR techniques, are reported. The observation of through-space couplings, such as, (1h)J(FH), and (1h)J(FN), provides direct evidence for the existence of intra-molecular HB. Solvent induced perturbations and the variable temperature NMR experiments unambiguously establish the presence of intramolecular HB. The existence of multiple conformers in some of the investigated molecules is also revealed by two dimensional HOESY and N-15-H-1 HSQC experiments. The H-1 DOSY experimental results discard any possibility of self or cross dimerization of the molecules. The derived NMR experimental results are further substantiated by Density Function Theory (DFT) based Non Covalent Interaction (NCI), and Quantum Theory of Atom in Molecule (QTAIM) calculations. The NCI calculations served as a very sensitive tool for detection of non-covalent interactions and also confirm the presence of bifurcated HBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of Guanidinium L-Ascorbate (GuLA) were grown and crystal structure was determined by direct methods. GuLA crystallizes in orthorhombic, non-centrosymmetric space group P2(1)2(1)2(1). The UV-cutoff was determined as 325 nm. The morphology was generated and the interplanar angles estimated and compared with experimental values. Second harmonic generation conversion efficiency was measured and compared with other salts of L-Ascorbic acid. Surface laser damage threshold was calculated as 11.3GW/cm(2) for a single shot of laser of 1064 nm wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent organic materials have attracted significant attention in recent times owing to their opportunities in various functional applications. Interestingly, unlike fluorescence, opportunities hidden within the phosphorescence properties of organic compounds have received considerably less attention even until last few years. It is only in the second decade of the 21st century, within a time span of less than last 5 years, that the concepts and prospects of organic compounds as phosphorescent materials have evolved rapidly. The previously perceived limitations of organic compounds as phosphorescent materials have been overcome and several molecules have been designed using old and new concepts, such as heavy atom effects, matrix assisted isolation, hydrogen bonding and halogen bonding, thereby gaining access to a significant number of materials with efficient phosphorescent features. In addition, significant improvements have been made in the development of RTP (room temperature phosphorescent) materials, which can be used under ambient conditions. In this review, we bring together the vastly different approaches developed by various researchers to understand and appreciate this recent revolution in organic luminescent materials.