262 resultados para Optimal transportation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider a single discrete time queue with infinite buffer. The channel may experience fading. The transmission rate is a linear function of power used for transmission. In this scenario we explicitly obtain power control policies which minimize mean power and/or mean delay. There may also be peak power constraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In underlay cognitive radio (CR), a secondary user (SU) can transmit concurrently with a primary user (PU) provided that it does not cause excessive interference at the primary receiver (PRx). The interference constraint fundamentally changes how the SU transmits, and makes link adaptation in underlay CR systems different from that in conventional wireless systems. In this paper, we develop a novel, symbol error probability (SEP)-optimal transmit power adaptation policy for an underlay CR system that is subject to two practically motivated constraints, namely, a peak transmit power constraint and an interference outage probability constraint. For the optimal policy, we derive its SEP and a tight upper bound for MPSK and MQAM constellations when the links from the secondary transmitter (STx) to its receiver and to the PRx follow the versatile Nakagami-m fading model. We also characterize the impact of imperfectly estimating the STx-PRx link on the SEP and the interference. Extensive simulation results are presented to validate the analysis and evaluate the impact of the constraints, fading parameters, and imperfect estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a low-complexity algorithm based on Markov chain Monte Carlo (MCMC) technique for signal detection on the uplink in large scale multiuser multiple input multiple output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and similar number of uplink users. The algorithm employs a randomized sampling method (which makes a probabilistic choice between Gibbs sampling and random sampling in each iteration) for detection. The proposed algorithm alleviates the stalling problem encountered at high SNRs in conventional MCMC algorithm and achieves near-optimal performance in large systems with M-QAM. A novel ingredient in the algorithm that is responsible for achieving near-optimal performance at low complexities is the joint use of a randomized MCMC (R-MCMC) strategy coupled with a multiple restart strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for large number of BS antennas and users (e.g., 64, 128, 256 BS antennas/users).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider signal detection in nt × nr underdetermined MIMO (UD-MIMO) systems, where i) nt >; nr with a overload factor α = nt over nr >; 1, ii) nt symbols are transmitted per channel use through spatial multiplexing, and iii) nt, nr are large (in the range of tens). A low-complexity detection algorithm based on reactive tabu search is considered. A variable threshold based stopping criterion is proposed which offers near-optimal performance in large UD-MIMO systems at low complexities. A lower bound on the maximum likelihood (ML) bit error performance of large UD-MIMO systems is also obtained for comparison. The proposed algorithm is shown to achieve BER performance close to the ML lower bound within 0.6 dB at an uncoded BER of 10-2 in 16 × 8 V-BLAST UD-MIMO system with 4-QAM (32 bps/Hz). Similar near-ML performance results are shown for 32 × 16, 32 × 24 V-BLAST UD-MIMO with 4-QAM/16-QAM as well. A performance and complexity comparison between the proposed algorithm and the λ-generalized sphere decoder (λ-GSD) algorithm for UD-MIMO shows that the proposed algorithm achieves almost the same performance of λ-GSD but at a significantly lesser complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of characterizing the minimum average delay, or equivalently the minimum average queue length, of message symbols randomly arriving to the transmitter queue of a point-to-point link which dynamically selects a (n, k) block code from a given collection. The system is modeled by a discrete time queue with an IID batch arrival process and batch service. We obtain a lower bound on the minimum average queue length, which is the optimal value for a linear program, using only the mean (λ) and variance (σ2) of the batch arrivals. For a finite collection of (n, k) codes the minimum achievable average queue length is shown to be Θ(1/ε) as ε ↓ 0 where ε is the difference between the maximum code rate and λ. We obtain a sufficient condition for code rate selection policies to achieve this optimal growth rate. A simple family of policies that use only one block code each as well as two other heuristic policies are shown to be weakly optimal in the sense of achieving the 1/ε growth rate. An appropriate selection from the family of policies that use only one block code each is also shown to achieve the optimal coefficient σ2/2 of the 1/ε growth rate. We compare the performance of the heuristic policies with the minimum achievable average queue length and the lower bound numerically. For a countable collection of (n, k) codes, the optimal average queue length is shown to be Ω(1/ε). We illustrate the selectivity among policies of the growth rate optimality criterion for both finite and countable collections of (n, k) block codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the tradeoff between delivery delay and energy consumption in a delay-tolerant network in which a message (or a file) has to be delivered to each of several destinations by epidemic relaying. In addition to the destinations, there are several other nodes in the network that can assist in relaying the message. We first assume that, at every instant, all the nodes know the number of relays carrying the message and the number of destinations that have received the message. We formulate the problem as a controlled continuous-time Markov chain and derive the optimal closed-loop control (i.e., forwarding policy). However, in practice, the intermittent connectivity in the network implies that the nodes may not have the required perfect knowledge of the system state. To address this issue, we obtain an ordinary differential equation (ODE) (i.e., a deterministic fluid) approximation for the optimally controlled Markov chain. This fluid approximation also yields an asymptotically optimal open-loop policy. Finally, we evaluate the performance of the deterministic policy over finite networks. Numerical results show that this policy performs close to the optimal closed-loop policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparse representation based classification (SRC) is one of the most successful methods that has been developed in recent times for face recognition. Optimal projection for Sparse representation based classification (OPSRC)1] provides a dimensionality reduction map that is supposed to give optimum performance for SRC framework. However, the computational complexity involved in this method is too high. Here, we propose a new projection technique using the data scatter matrix which is computationally superior to the optimal projection method with comparable classification accuracy with respect OPSRC. The performance of the proposed approach is benchmarked with various publicly available face database.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distributed, low-feedback, timer scheme is used in several wireless systems to select the best node from the available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal metric-to-timer mappings for the practical scenario where the number of nodes is unknown. We consider two cases in which the probability distribution of the number of nodes is either known a priori or is unknown. In the first case, the optimal mapping maximizes the success probability averaged over the probability distribution. In the second case, a robust mapping maximizes the worst case average success probability over all possible probability distributions on the number of nodes. Results reveal that the proposed mappings deliver significant gains compared to the mappings considered in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homogenization and error analysis of an optimal interior control problem in the framework of Stokes' system, on a domain with rapidly oscillating boundary, are the subject matters of this article. We consider a three dimensional domain constituted of a parallelepiped with a large number of rectangular cylinders at the top of it. An interior control is applied in a proper subdomain of the parallelepiped, away from the oscillating volume. We consider two types of functionals, namely a functional involving the L-2-norm of the state variable and another one involving its H-1-norm. The asymptotic analysis of optimality systems for both cases, when the cross sectional area of the rectangular cylinders tends to zero, is done here. Our major contribution is to derive error estimates for the state, the co-state and the associated pressures, in appropriate functional spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information spreading in a population can be modeled as an epidemic. Campaigners (e.g., election campaign managers, companies marketing products or movies) are interested in spreading a message by a given deadline, using limited resources. In this paper, we formulate the above situation as an optimal control problem and the solution (using Pontryagin's Maximum Principle) prescribes an optimal resource allocation over the time of the campaign. We consider two different scenarios-in the first, the campaigner can adjust a direct control (over time) which allows her to recruit individuals from the population (at some cost) to act as spreaders for the Susceptible-Infected-Susceptible (SIS) epidemic model. In the second case, we allow the campaigner to adjust the effective spreading rate by incentivizing the infected in the Susceptible-Infected-Recovered (SIR) model, in addition to the direct recruitment. We consider time varying information spreading rate in our formulation to model the changing interest level of individuals in the campaign, as the deadline is reached. In both the cases, we show the existence of a solution and its uniqueness for sufficiently small campaign deadlines. For the fixed spreading rate, we show the effectiveness of the optimal control strategy against the constant control strategy, a heuristic control strategy and no control. We show the sensitivity of the optimal control to the spreading rate profile when it is time varying. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the problem of determining the time-optimal path of a fixed-wing Miniature Air Vehicle (MAV), in the presence of wind. The MAV, which is subject to a bounded turn rate, is required to eventually converge to a straight line starting from a known initial position and orientation. Earlier work in the literature uses Pontryagin's Minimum Principle (PMP) to solve this problem only for the no-wind case. In contrast, the present work uses a geometric approach to solve the problem completely in the presence of wind. In addition, it also shows how PMP can be used to partially solve the problem. Using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for cases with steady and time-varying wind. Some issues on real-time path planning are also addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a strategy to determine the shortest path of a fixed-wing Miniature Air Vehicle (MAV), constrained by a bounded turning rate, to eventually fly along a given straight line, starting from an arbitrary but known initial position and orientation. Unlike the work available in the literature that solves the problem using the Pontryagin's Minimum Principle (PMP) the trajectory generation algorithm presented here considers a geometrical approach which is intuitive and easy to understand. This also computes the explicit solution for the length of the optimal path as a function of the initial configuration. Further, using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for different cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal measurement selection strategy based on incoherence among rows (corresponding to measurements) of the sensitivity (or weight) matrix for the near infrared diffuse optical tomography is proposed. As incoherence among the measurements can be seen as providing maximum independent information into the estimation of optical properties, this provides high level of optimization required for knowing the independency of a particular measurement on its counterparts. The proposed method was compared with the recently established data-resolution matrix-based approach for optimal choice of independent measurements and shown, using simulated and experimental gelatin phantom data sets, to be superior as it does not require an optimal regularization parameter for providing the same information. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)