231 resultados para Nitrogen compounds.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three novel homologous series of rod-shaped cyanophenyl alkoxy benzoate liquid crystalline compounds with lateral polar fluorine and chlorine substituent were prepared, and chemical structures of novel materials have been characterized by standard spectral technique and elemental analysis. The mesophase characterization was carried out using the combination of polarized optical microscopy and differential scanning calorimetry. All the compounds exhibit wide thermal range of enantiotropic SmA phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of functionalized organoselenium compounds were synthesized from doubly activated cyclopropanes and diselenides in the presence of sodium borohydride. A range of substituents were stable under these reaction conditions. Additionally, we extended the scope of the method by reducing nitro groups in the products to give the corresponding selenium-containing unnatural amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mild and convenient method for the synthesis of amides has been explored by using secondary alcohols, Cu(ClO4)(2)6H(2)O as a catalyst, and trimethylsilyl azide (TMSN3) as a nitrogen source in the presence of 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) at ambient temperature. This method has been successfully adapted to the preparation of azides directly from their corresponding alcohols and offers excellent chemoselectivity in the formation of -halo azides and the azidation of allylic alcohols in the presence of a benzyl alcohol moiety. In addition, this strategy provides an opportunity to synthesize azides that can serve as precursors to -amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance of supercapacitors based on 1:1 (by weight) composites of polyaniline (PANI) with nanosheets of nitrogenated reduced graphene oxide (NRGO), BC1.5N, MoS2 and WS2 has been investigated in detail. The highest specific capacitance is found with the 1:1 NRGO-PANI composite, the value being 561 F/g at a current density of 0.2 A/g. All the 1:1 nanocomposites show good cyclability. Increasing the PANI content increases the specific capacitance and the highest value found being 715 F/g at a current density of 0.5 A/g in the case of the 1:6 NRGO-PANI composite. However, all the 1:6 composites show a marked decrease in specific capacitance with increase in current density. The energy density of 1:6 NRGO-PANI is similar to 25 Wh/Kg at 0.5 A/g and 1:1 NRGO-PANI is similar to 19 Wh/Kg at 0.2 A/g. NRGO-PANI composites clearly stand out as viable materials for practical applications. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By combining first principles density functional theory and electronic as well as lattice Boltzmann transport calculations, we unravel the excellent thermoelectric properties of Zintl phase compounds ACd(2)Sb(2) (where, A = Ca, Ba, Sr). The calculated electronic structures of these compounds show charge carrier pockets and heavy light bands near the band edge, which lead to a large power factor. Furthermore, we report large Gruneisen parameters and low phonon group velocity indicating essential strong anharmonicity in these compounds, which resulted in low lattice thermal conductivity. The combination of low thermal conductivity and the excellent transport properties give a high ZT value of similar to 1.4-1.9 in CaCd2Sb2 and BaCd2Sb2 at moderate p and n-type doping. Our results indicate that well optimized Cd-based Zintl phase compounds have the potential to match the performance of conventional thermoelectric materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report the synthesis of boron and nitrogen Co-doped carbon nanoparticles (BN-CNPs) by a hydrothermal method using sucrose, boric acid, and urea as the precursors. The BN-CNPs show excellent photoluminescence with a quantum yield of similar to 14.2% in aqueous solution and can be used as photoluminescent probes for selective and sensitive detection of picric acid (PA). PA quenches the photoluminescence signal remarkably, while other explosives cause a little quenching confirming the high selectivity of BN-CNPs. The sensitivity toward PA sensing is high at pH 7 and increases with temperature. The detection limit as well as the sensitivity are shown to improve by adding NaCl to the PA. The low detection limit can be as low as 10 nM at room temperature and pH 7, which indicates the BN-CNPs are superior as compared to other luminescent probes reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library(TM) using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 mu M and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel run engines are gaining popularity since the last few years as a viable alternative to conventional petro-diesel based engines. In biodiesel exhaust the content of volatile organic compounds, oil mist, and mass of particulate matter is considerably lower. However, the concentration of oxides of nitrogen (NOx) is relatively higher. In this paper the biodiesel exhaust from a stationary engine is treated under controlled laboratory conditions for removal of NOx using dielectric barrier discharge plasma in cascade with adsorbents prepared from abundantly available industrial waste byproducts like red mud and copper slag. Results were compared with gamma-alumina, a commercial adsorbent. Two different dielectric barrier discharge (DBD) reactors were tested for their effectiveness under Repetitive pulses /AC energization. NOx removal as high as 80% was achieved with pulse energized reactors when cascaded with red mud as adsorbent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium-ion batteries have been extensively pursued as economic alternatives to lithium-ion batteries. Investigating the polyanion chemistry, alluaudite structured Na2Fe2II(SO4)(3) has been recently discovered as a 3.8 V positive electrode material (Barpanda et al., Nature Commun., 5: 4358, 2014). Registering the highest ever Fe-III/Fe-II redox potential (vs. Na/Na+) and formidable energy density, it has opened up a new polyanion family for sodium batteries. Exploring the alluaudite family, here we report isotypical Na2+2xMn2-xII(SO4)(3) (x = 0.22) as a novel high-voltage cathode material for the first time. Following low-temperature (ca. 350 degrees C) solid-state synthesis, the structure of this new alluaudite compound has been solved adopting a monoclinic framework (s.g. C2/c) showing antiferromagnetic ordering at 3.4 K. Synergising experimental and ab initio DFT investigation, Na2+2xMn2-xII(SO4)(3) has been found to be a potential high-voltage (ca. 4.4 V) cathode material for sodium batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report synthesis, spectroscopic characterization, and thermal analysis of zinc acetylacetonate complex adducted by nitrogen donor ligands, such as pyridine, bipyridine, and phenanthroline. The pyridine adducted complex crystallizes to monoclinic crystal structure, whereas other two adducted complexes have orthorhombic structure. Addition of nitrogen donor ligands enhances the thermal property of these complexes as that with parent metal-organic complex. Zinc acetylacetonate adducted with pyridine shows much higher volatility (106 degrees C), decomposition temperature (202 degrees C) as that with zinc acetylacetonate (136 degrees C, 220 degrees C), and other adducted complexes. All the adducted complexes are thermally stable, highly volatile and are considered to be suitable precursors for metal organic chemical vapor deposition. The formation of these complexes is confirmed by powder X-ray diffraction, Fourier transform infrared spectroscopy, mass spectroscopy, and elemental analysis. The complexes are widely used as starting precursor materials for the synthesis of ZnO nanostructures by microwave irradiation assisted coating process. (c) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultralight and macroporous three-dimensional reduced graphene oxide (rGO) foams are prepared by lyophilization (freeze-drying) technique to avoid a conventional template method. This method allows tailoring the porosity of the foams by varying the weight percentages of graphene oxide dispersions in water. Three different rGO foams of 0.2, 0.5 and 1.0 wt% are used for NO2 sensing. Sensing response from the tailored structure of rGO is found to be directly related to the density. A maximum of 20% sensing response is observed for a higher porosity of the structure, better than the known results so far on graphene foams in the literature. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordination-driven self-assembly of 3-(5-(pyridin-3-yl)-1H-1,2,4-triazol-3-yl)pyridine (L) was investigated with 90 degrees cis-blocked Pd(II) acceptors and tetratopic Pd(NO3)(2). Although the ligand is capable of binding in several different conformations (acting as a ditopic donor through the pyridyl nitrogens), the experimental results (including X-ray structures) showed that it adopts a particular conformation when it binds with 90 degrees cis-blocked Pd(II) acceptors (two available sites) to yield 2 + 2] self-assembled macrocycles. On the other hand, with Pd(NO3)(2) (where four available sites are present) a different conformer of the same donor was selectively bound to form a molecular cubic cage. The experimental findings were corroborated well with the density functional theory (B3LYP) calculations. The tetratopic Pd(NO3)(2) yielded a 6 + 12] self-assembled Pd6L12 molecular cube, which contains a potential void occupied by nitrate and perchlorate ions. Being a triazole based ligand, the free space inside the cage is enriched with several sp(2) hybridised nitrogen atoms with lone pairs of electrons to act as Lewis basic sites. Knoevenagel condensation reactions of several aromatic aldehydes with active methylene compounds were successfully performed in reasonably high yields in the presence of the cage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronically nonadiabatic decomposition pathways of guanidium triazolate are explored theoretically. Nonadiabatically coupled potential energy surfaces are explored at the complete active space self-consistent field (CASSCF) level of theory. For better estimation of energies complete active space second order perturbation theories (CASPT2 and CASMP2) are also employed. Density functional theory (DFT) with B3LYP functional and MP2 level of theory are used to explore subsequent ground state decomposition pathways. In comparison with all possible stable decomposition products (such as, N-2, NH3, HNC, HCN, NH2CN and CH3NC), only NH3 (with NH2CN) and N-2 are predicted to be energetically most accessible initial decomposition products. Furthermore, different conical intersections between the S-1 and S-0 surfaces, which are computed at the CASSCF(14,10)/6-31G(d) level of theory, are found to play an essential role in the excited state deactivation process of guanidium triazolate. This is the first report on the electronically nonadiabatic decomposition mechanisms of isolated guanidium triazolate salt. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rechargeable batteries have propelled the wireless revolution and automobiles market over the past 25 years. Developing better batteries with improved energy density demands unveiling of new cathode ceramic materials with suitable diffusion channels and open framework structure. In this pursuit of achieving higher energy density, one approach is to realize enhanced redox voltage of insertion of ceramic compounds. This can be accomplished by incorporating highly electronegative anions in the cathode ceramics. Building on this idea, recently various sulphate- based compounds have been reported as high voltage cathode materials. The current article highlights the use of sulphate (SO4) based cathodes to realize the highest ever Fe3+/Fe2+ redox potentials in Li-ion batteries (LiFeSO4F fluorosulphate: 3.9V vs Li/Li+) and Na-ion batteries (Na2Fe2(SO4)(3) polysulphate: 3.8V vs Na/Na+). These sulphate-based cathode ceramic compounds pave way for newer avenues to design better batteries for future applications.