314 resultados para MAGNETIC-STRUCTURES
Resumo:
Gadolinium strontium manganite single crystals of the composition Gd0.5Sr0.5MnO3 were grown using the optical float zone method. We report here the magnetic and magnetotransport properties of these crystals. A large magnetoresistance similar to 10(9)% was observed at 45 K under the application of a 110 kOe field. We have observed notable thermomagnetic anomalies such as open hysteresis loops across the broadened first-order transition between the charge order insulator and the ferromagnetic metallic phase while traversing the magnetic field-temperature (H-T) plane isothermally or isomagnetically. In order to discern the cause of these observed anomalies, the H-T phase diagram for Gd0.5Sr0.5MnO3 is formulated using the magnetization-field (M-H), magnetization-temperature (M-T) and resistance-temperature (R-T) measurements. The temperature dependence of the critical field (i.e. H-up, the field required for transformation to the ferromagnetic metallic phase) is non-monotonic. We note that the non-monotonic variation of the supercooling limit is anomalous according to the classical concepts of the first-order phase transition. Accordingly, H-up values below similar to 20 K are unsuitable to represent the supercooling limit. It is possible that the nature of the metastable states responsible for the observed open hysteresis loops is different from that of the supercooled ones.
Resumo:
Background: The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the C alpha atoms which are modeled with modest accuracy. Methodology/Principal Findings: In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of C alpha atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of C alpha. We extend the method further to recognize potential protein-protein interface residues. Conclusion/Significance: Our approach to identify buried and exposed residues solely from the positions of C alpha atoms resulted in an accuracy of 84%, sensitivity of 83-89% and specificity of 67-94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70-96% and specificity of 58-94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from C alpha positions and all-atom models suggested that, recognition of interfacial residues using C alpha atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only C alpha positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.
Resumo:
Phase separation (PS) in hole-doped cobaltites (La1-xSrxCoxO3) is drawing renewed interest recently. In particular, the magnetic behavior of La0.85Sr0.15CoO3 has been subjected to a controversial debate for the past several years; while some groups show evidence for magnetic PS, others show spin glass (SG) behavior. Here, an attempt is made to resolve the controversy related to ``PS versus SG'' behavior in this compound. We present the results of a comprehensive investigation of the dc magnetization, ac susceptibility, and the magnetotransport properties of La0.85Sr0.15CoO3 samples. We contemplate that the magnetic PS in La0.85Sr0.15CoO3 is neither intrinsic nor inherent, but it is a consequence of the preparation conditions. It is realized that a low temperature annealed (LTA) sample shows PS whereas the high temperature annealed (HTA) sample shows SG behavior. The Brillouin-like behavior of field cooled dc magnetization and apparently no frequency dependent peak shift in ac susceptibility for the LTA sample characterize it to be of ferromagneticlike whereas a kink in field cooled dc magnetization and a considerable amount (similar to 3 K) of frequency dependent peak shift in the ac susceptibility for the HTA sample characterize it to be of SG state. The magnetotransport properties show that the HTA sample is more semiconducting as compared to the LTA sample. This is interpreted in terms of the presence of isolated as well as coalescing metallic ferromagnetic clusters in the case of LTA sample. The magnetoresistance (MR) at 10 K for the HTA sample exhibits a huge value (similar to 65%) as compared to the LTA sample, and it monotonically decreases with the rise in temperature. Such a high value of MR in the case of HTA sample is strongly believed to be due to the spin dependent part of random potential distribution. Further, the slow decay of remnant magnetization with progress of time and the existence of hysteresis at higher temperatures (up to 200 K) in the case of LTA sample as compared to the HTA sample clearly unveil different magnetic states associated with them.
Resumo:
This letter explores the structural behavior of nanocrystalline tin mono sulfide (SnS) structures with respect to temperature (100-600 K). These studies emphasize that the structural properties of SnS nanocrystalline structures depend on the surrounding temperature. The lattice parameters of SnS nanocrystals slightly varied like their microstructures with the increase of temperature. These changes strongly influence the optical properties of SnS nanostructures. On the other hand, the structures exhibited higher strain (similar to 0.44%) than that of microstructured (0.3%) and bulk (0.12%) counterparts. The observed results are discussed under the light of existing concepts and reported.
Resumo:
A solvothermal reaction of ZnO, boric acid (B(OH)(3)), and aliphatic airlines in a water-pyridine mixture gave four zinc borate phases of different dimensionalities: [Zn(B4O8H2)(C3H10N2)], I (one-dimensional); [Zn(B4O8H2)(C3H10N2)] H2O, II (two-dimensional); [Zn(B5O10H3)(C10H24N4)]center dot H2O, III (two-dimensional): and [Zn-2(B8O15H2)(C3H10N2)(2)], IV (three-dimensional). The structures are formed by the connectivity involving polyborate chains and layers with Zn2+ species. In all the compounds, the amine molecules act its file ligand binding either the same or different zn centers. The formation of two different structures, II and IV, from the same amine by varying the reaction time is noteworthy. Transformation studies on II indicate that the formation of IV. from II, is facile and has been investigated for the first time. Two of file compounds, I and III, exhibit activity for second-order nonlinear optical behavior. The UV exposure of the sample indicates the absorption of all the UV radiation suggesting that the zinc borate compounds could be exploited for UV-blocking applications. The compounds have been characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, UV-vis, photoluminescence, and NMR studies.
Resumo:
First-principles calculations were performed for orthorhombic HgO, rhombohedral and cubic phases of HgTiO3 (HTO) and HgPbO3 (HPO). The calculations show that in the rhombohedral phase HTO is a direct gap insulator with a gap of ~1.6 eV. The rhombohedral phase of HPO, on the other hand, shows a weak metallic character. The results provide an explanation for the electrical properties of these compounds. The cubic phases of HTO and HPO are invariably metallic in nature, thereby suggesting that for HTO the rhombohedral–cubic transition must also be accompanied by a change in the electrical state. Examination of the electronic density of states of these systems revealed no significant on-site mixing of Hg 5d and Hg 6s states in any of these materials.
Resumo:
Geometric and structural constraints greatly restrict the selection of folds adapted by protein backbones, and yet, folded proteins show an astounding diversity in functionality. For structure to have any bearing on function, it is thus imperative that, apart from the protein backbone, other tunable degrees of freedom be accountable. Here, we focus on side-chain interactions, which non-covalently link amino acids in folded proteins to form a network structure. At a coarse-grained level, we show that the network conforms remarkably well to realizations of random graphs and displays associated percolation behavior. Thus, within the rigid framework of the protein backbone that restricts the structure space, the side-chain interactions exhibit an element of randomness, which account for the functional flexibility and diversity shown by proteins. However, at a finer level, the network exhibits deviations from these random graphs which, as we demonstrate for a few specific examples, reflect the intrinsic uniqueness in the structure and stability, and perhaps specificity in the functioning of biological proteins.
Resumo:
MIPS (metal interactions in protein structures) is a database of metals in the three-dimensional acromolecular structures available in the Protein Data Bank. Bound metal ions in proteins have both catalytic and structural functions. The proposed database serves as an open resource for the analysis and visualization of all metals and their interactions with macromolecular (protein and nucleic acid) structures. MIPS can be searched via a user-friendly interface, and the interactions between metals and protein molecules, and the geometric parameters, can be viewed in both textual and graphical format using the freely available graphics plug-in Jmol. MIPS is updated regularly, by means of programmed scripts to find metal-containing proteins from newly released protein structures. The database is useful for studying the properties of coordination between metals and protein molecules. It also helps to improve understanding of the relationship between macromolecular structure and function. This database is intended to serve the scientific community working in the areas of chemical and structural biology, and is freely available to all users, around the clock, at http://dicsoft2.physics.iisc.ernet.in/mips/.
Resumo:
Asymmetric diadenosine tetraphosphate (Ap(4)A) hydrolases degrade the metabolite Ap(4)A back into ATP and AMP. The three-dimensional crystal structure of Ap(4)A hydrolase (16 kDa) from Aquifex aeolicus has been determined in free and ATP-bound forms at 1.8 and 1.95 angstrom resolution, respectively. The overall three-dimensional crystal structure of the enzyme shows an alpha beta alpha-sandwich architecture with a characteristic loop adjacent to the catalytic site of the protein molecule. The ATP molecule is bound in the primary active site and the adenine moiety of the nucleotide binds in a ring-stacking arrangement equivalent to that observed in the X-ray structure of Ap(4)A hydrolase from Caenorhabditis elegans. Binding of ATP in the active site induces local conformational changes which may have important implications in the mechanism of substrate recognition in this class of enzymes. Furthermore, two invariant water molecules have been identified and their possible structural and/or functional roles are discussed. In addition, modelling of the substrate molecule at the primary active site of the enzyme suggests a possible path for entry and/or exit of the substrate and/or product molecule.
Resumo:
3C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.
Resumo:
It is shown that a magnetic-pressure-dominated, supersonic jet which expands (or contracts) in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to take place, the effective reconnection time must be a fraction ɛ ⪉ 1 of the expansion time. The amount of energy dissipation is calculated, and it is concluded that magnetic energy dissipation could, in principle, power the observed synchrotron emission in extragalactic radio jets such as NGC 6251. However, this mechanism is only viable if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.
Resumo:
The Taylor hypothesis has provided a model for the relaxed magnetic configurations of not only laboratory plasmas, but also of astrophysical plasmas. However, energy dissipation is possible only for systems which depart from a strict Taylor state, and hence a parameter describing that departure must be introduced, when the Taylor hypothesis is used to estimate the dissipation. An application of the Taylor hypothesis to the problem of coronal heating provides an insight into this difficult problem. When particular sorts of footpoint motions put energy and helicity in the corona, the conservation of helicity puts a constraint on how much of the energy can be dissipated. However, on considering a random distribution of footpoint motions, this constraint gets washed away, and the Taylor hypothesis is probably not going to play any significant role in the actual calculation of relevant physical quantities in the coronal heating problem.
Resumo:
The equation of motion for a toroidal flux ring in a stellar convective envelope is derived, and the equilibrium of such a ring is considered. Necessary conditions for the stability of toroidal flux rings are derived, and results of stability calculations for a particular model of the meridional flow are presented. The motions of the flux rings when the rings are far from their equilibrium position or when equilibrium does not exist are considered. The results confirm the linear stability analysis, and show that in the absence of stable equilibrium, the rings move toward the solar surface along a trajectory which is parallel to the rotation axis. It is expected that viscosity will tend to reduce the rotational velocity difference between the flux ring and its surroundings, thus reducing the Coriolis force and altering the equilibrium. The storage time of toroidal flux rings is estimated, and some implications for the sun are discussed.