476 resultados para Gasterosteus aculeatus, acclimation temperature, maternal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been suggested to accurately determine the DBTT of diffusion aluminide bond coats. Micro-tensile testing of free-standing coating samples has been carried out. The DBTT was determined based on the variation of plastic strain-to-fracture with temperature. The positive features of this method over the previously reported techniques are highlighted. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of present generation uncooled Hg1-xCdxTe infrared photon detectors relies on complex heterostructures with a basic unit cell of type (n) under bar (+)/pi/(p) under bar (+). We present an analysis of double barrier (n) under bar (+)/pi/(p) under bar (+) mid wave infrared (x = 0.3) HgCdTe detector for near room temperature operation using numerical computations. The present work proposes an accurate and generalized methodology in terms of the device design, material properties, and operation temperature to study the effects of position dependence of carrier concentration, electrostatic potential, and generation-recombination (g-r) rates on detector performance. Position dependent profiles of electrostatic potential, carrier concentration, and g-r rates were simulated numerically. Performance of detector was studied as function of doping concentration of absorber and contact layers, width of both layers and minority carrier lifetime. Responsivity similar to 0.38 A W-1, noise current similar to 6 x 10(-14) A/Hz(1/2) and D* similar to 3.1 x 10(10)cm Hz(1/2) W-1 at 0.1 V reverse bias have been calculated using optimized values of doping concentration, absorber width and carrier lifetime. The suitability of the method has been illustrated by demonstrating the feasibility of achieving the optimum device performance by carefully selecting the device design and other parameters. (C) 2010 American Institute of Physics. doi:10.1063/1.3463379]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer code is developed as a part of an ongoing project on computer aided process modelling of forging operation, to simulate heat transfer in a die-billet system. The code developed on a stage-by-stage technique is based on an Alternating Direction Implicit scheme. The experimentally validated code is used to study the effect of process specifics such as preheat die temperature, machine ascent time, rate of deformation, and dwell time on the thermal characteristics in a batch coining operation where deformation is restricted to surface level only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purified trehalases of the mesophilic fungus, Neurospora crassa, and the thermophilic fungus, Thermomyces lanuginosus, had similar temperature and pH optima for activity, but differed in molecular weight, electrophoretic mobility and Michaelis constant. At lower concentration, trehalases from both fungi were inactivated to similar extent at 60°C. While purified trehalase of T. lanuginosus was afforded protection against heat-inactivation by proteinaceous protective factor(s) present in mycelial extracts, by bovine serum albumin and by casein, these did not afford protection to N. crassa trehalase against heat inactivation. Both trehalases exhibited discontinuous Arrhenius plots with temperature of discontinuity at 40°C. The activation energy calculated from the slope of the Arrhenius plot was higher for the T. lanuginosus enzyme. The plots of apparent K m versus 1/T for trehalases of N. crassa and T. lanuginosus were linear from 30° to 60°C. The results show that purified trehalases of the mesophilic and the thermophilic fungus are distinct. Although, these exhibit similar thermostability of their catalytic function at low concentration, distinctive thermal stability characteristics of thermophilic enzyme become apparent at high protein concentration. This could be brought about in the cell by the enzyme itself, or by other proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the temperature dependent optical band gap changes in the amorphous Ge2Sb2Te5 (GST) films. The behavior of the amorphous GST thin films at low temperatures has been studied. The band gap increment of around 0.2 eV is observed at low temperature (4.2 K) compared to room temperature (300 K). The band gap changes associated with the temperature are completely reversible. The other optical parameters like Urbach energy and Tauc parameter (B-1/2) are studied for different temperatures and discussed. The observed changes in optical band gap (E-g) are fitting to Fan's one phonon approximation. Phonon energy ((h) over bar omega) corresponding to a frequency of 3.59 THz is derived from Fan's approximation, which is close to the reported value of 3.66 THz. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperature fluorination with elemental fluorine of elemental phosphorus, sulphur, silicon, amorphous carbon and phosphorus trichloride, phosphorus pentoxide, triphenylphosphine, hexafluorodisilane, hexachlorodisilane, hexabromodisilane, tetrasulphur tetranitride, sulphur dioxide, thionyl chloride and sulphuryl chloride has been carried out in freon-11 medium. The corresponding fluoro compounds have been isolated in near quantitative yields, purified by low temperature fractional condensation and characterised by IR spectroscopy and elemental analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature internal-friction measurements have been used to study the universal low-energy excitations in glasses before and after crystallization in two glass ceramics, one based on MgO-Al2O3-SiO2 (Corning Code 9606) and one based on Li2O-Al2O3-SiO2 (Corning Code 9623). In the Code 9606 sample, the number density of excitations is greatly reduced, while in the Code 9623 sample, their number density remains practically unaltered in the crystallized state. These measurements confirm the conclusions reached by Cahill et al. (preceding paper), which were based on thermal measurements up to room temperature. These measurements also demonstrate the usefulness of internal friction as a tool for the study of these low-energy excitations, since internal friction is less sensitive to defects common to glass ceramics, like magnetic impurities and grain boundaries, which tend to dominate low-temperature specific heat and thermal conductivity, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room-temperature sensing characteristics for H-2, ethanol, NH3, H2S and water have been investigated with thick-film sensors based on GaN nanoparticles, prepared by a simple chemical route. In general, GaN nanoparticles exhibit satisfactory sensor properties for these gases and vapors even at room temperature. The sensitivity for ethanol is found to be highest, the sensitivity and recovery times being smallest. Gas sensor properties of GaN seem to be related to intrinsic defects, which act as sorption sites for the gas molecules. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of imposed strain on the room temperature time-dependent deformation behavior of bulk metallic glasses (BMGs) was systematically investigated through spherical nanoindentation creep experiments. The results show that creep occurred even at very low strains within elastic regimes and, interestingly, a precipitous increase in creep rate was found in plastic regimes, with BMG that had a higher free volume exhibiting greater creep rates. The results are discussed in terms of prevailing mechanisms of elastic/plastic deformation of amorphous alloys. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics calculations on methane sorbed in NaY (Si/Al = 3.0) employing realistic methane-methane and methane-zeolite intermolecular potential functions at different temperatures (50, 150, 220, and 300 K) and concentrations (2, 4, 6, and 8 molecules/cage) are reported. The thermodynamic results are in agreement with the available experimental data. Guest-guest and guest-host radial distribution functions (rdfs), energy distribution functions, distribution of cage occupancy, center-of-cage-center-of-mass (coc-com) rdfs, velocity autocorrelation functions for com and angular motion and the Fourier transformed power spectra, and diffusion coefficients are presented as a function of temperature and concentration. At 50 K, methane is localized near the adsorption site. Site-site migration and essentially free rotational motion are observed at 150 K. Molecules preferentially occupy the region near the inner surface of the alpha-cage. The vibrational frequencies for the com of methane shift toward higher values with decreasing temperature and increasing adsorbate concentration. The observed frequencies for com motion are 36, 53, and 85 cm-1 and for rotational motion at 50 K, 95 and 150 cm-1 in agreement with neutron scattering data. The diffusion coefficients show a type I behavior as a function of loading in agreement with NMR measurements. Cage-to-cage diffusion is found to be always mediated by the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressure and temperature dependence of 35Cl nuclear quadrupole resonance (NQR) has been investigated in NaClO3 and Ba(ClO3)2·H2O. NQR frequencies are measured in the temperature range 77–300 K and up to 5 kbar pressure. The torsional frequency of the ClO3 pyramid and its variation with both pressure and temperature are evaluated from the NQR frequencies under the harmonic approximation. In general, the pressure effect on the internal motions is found to be less in Ba (ClO3)2·H2O compared to NaClO3. When the samples are cooled to 77 K the pressure coeffecient of NQR frequency becomes nearly zero in sodium chlorate, whereas it retains a value of 6 kHz kbar−1 in barium chlorate. This behaviour follows from the fact that at 77K, the torsional frequency in NaClO3 is unaffected by the application of pressure while it increases at the rate 12 cm−1 kbar−1 in Ba(ClO3)2·H2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-temperature superconductors are complex oxides, generally containing two-dimensional CuO2 sheets. Various families of the cuprate superconductors are described, paying special attention to aspects related to oxygen stoichiometry, phase stability, synthesis and chemical manipulation of charge carriers. Other aspects discussed are chemical applications of cuprates, possibly as gas sensors and copper-free oxide superconductors. All but the substituted Nd and Pr cuprates are hole-superconductors. Several families of cuprates show a nearly constant n(h) at maximum T(c). Besides this universality, the cuprates exhibit a number of striking common features. Based on Cu(2p) photoemission studies, it is found that the Cu-O charge-transfer energy, DELTA, and the Cu(3d)-O(2p) hybridization strength, t(pd), are key factors in the superconductivity of cuprates. The relative intensity of the satellite in the Cu(2p) core-level spectra, the polarizability of the CuO2 sheets as well as the hole concentration are related to DELTA/t(pd). These chemical bonding factors have to be explicitly taken into account in any model for superconductivity of the cuprates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conductivity of highly doped polypyrrole is less than that of intermediately doped samples, by two orders of magnitude, at 4.2 K. This may be due to more number of bipolarons in highly doped samples. Bipolarons require four times more activation energy than single polarons to hop by thermally induced virtual transitions to intermediate dissociated polaron states than by the nondissociated process. The conduction process in these polyconjugated systems involve ionization from deep trapped states, having a View the MathML source dependence, hopping from localised states, having View the MathML source dependence, and intersite tunnel percolation, having T−1 dependence. The interplay of these factors leads to a better fit by View the MathML source. The mechanism for this exponential behaviour need not be same as that of Motts variable range hopping. Conduction by percolation is possible, if an infinite cluster of chains can be connected by impurity centers created by dopant ions. The tendency for the saturation of conductivity at very low temperatures is due to the possibility of intersite tunnel percolation is disordered polaronic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the rapid solution combustion synthesis and characterization of Ag-substituted LaMnO3 phases at relatively low temperature using oxalyl dihydrazide, as fuel. Structural parameters were refined by the Rietveld method using powder X-ray diffraction data. While the parent LaMnO3 crystallizes in the orthorhombic structure, the Ag-substituted compounds crystallize in the rhombohedral symmetry. On increasing Ag-content, unit cell volume and Mn-O-Mn bond angle decreases. The Fourier transform infra red spectrum shows two absorption bands corresponding to Mn-O stretching vibration (v(s) mode) and Mn-O-Mn deformation vibration (v(b) mode) around 600 cm(-1) and 400 cm(-1) for the compositions x = 0.0, 0.05 and 0.10, respectively. Electrical resistivity measurements reveal that composition-controlled metal to insulator transition, with the maximum metal to insulator being 280 K for the composition La0.75Ag0.25MnO3. Increase in magnetic moment was observed with increase in Ag-content. The maximum magnetic moment of 35 emu/g was observed for the composition La0.80Ag0.20MnO3. (C) 2010 Elsevier Ltd. All rights reserved.