213 resultados para FLAVIN-CONTAINING MONOOXYGENASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of a tripeptide Boc-Leu-Val-Ac(12)c-OMe (1) is determined, which incorporates a bulky 1-aminocyclododecane-1-carboxylic acid (Ac(12)c) side chain. The peptide adopts a semi-extended backbone conformation for Leu and Val residues, while the backbone torsion angles of the C-,C--dialkylated residue Ac(12)c are in the helical region of the Ramachandran map. The molecular packing of 1 revealed a unique supramolecular twisted parallel -sheet coiling into a helical architecture in crystals, with the bulky hydrophobic Ac(12)c side chains projecting outward the helical column. This arrangement resembles the packing of peptide helices in crystal structures. Although short oligopeptides often assemble as parallel or anti-parallel -sheet in crystals, twisted or helical -sheet formation has been observed in a few examples of dipeptide crystal structures. Peptide 1 presents the first example of a tripeptide showing twisted -sheet assembly in crystals. Copyright (c) 2016 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma electrolytic oxidation coatings were produced on AM50 Mg alloy in alkaline phosphate based electrolyte with montmorillonite clay additives employing current densities of 30, 60, and 120 mA/cm(2). The effect of current density on the microstructure and corrosion properties of the coating was investigated. The clay additives got melted and reactively incorporated into the coating forming an amorphous phase, at all the current densities. However, the coating was predominantly amorphous only at 30 mA/cm(2) and with increasing current density, increasing fractions of crystalline phases were formed. Higher current densities resulted in increased thickness of the coating, but reduced the compactness of the coatings. Electrochemical impedance spectroscopy tests in 0.5 wt.% (0.08 M) and 3.5 wt.% (0.6 M) NaCl solution revealed that the coatings processed at 30 mA/cm(2) exhibited a relatively better initial corrosion resistance owing to its relatively defect-free barrier layer and compactness of the coating. However, the presence of amorphous phases in significant amounts and lack of MgO in the coating resulted in increased rate of dissolution of the coatings and degradation of corrosion resistance. Coatings produced at higher current densities exhibited initial inferior corrosion resistance due to a more defective barrier layer and increased porosity in pore band and outer porous layer. However, the increased amount of crystalline phases and an increased amount of MgO, which resisted dissolution, counterbalanced the negative effects of defective barrier and increased porosity resulting in a relatively lower rate of the degradation of the corrosion resistance. Thus, the corrosion resistance of all the coatings continuously decreased with time and became similar after prolonged immersion in NaCl solution. Increasing current density, therefore, did not prove to be beneficial for the improvement of the corrosion performance of the PEO coatings. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advancements of material science and its applications have been immensely influenced by the modern development of organic luminescent materials. Among all organic luminogens, boron containing compounds have already established their stature as one of the indispensable classes of luminescent dyes. Boron, in its various forms e. g. triarylboranes, borate dyes and boron clusters, has attracted considerable attention owing to its several unique and excellent photophysical features. In very recent times, beyond the realms of solution-state studies, luminescent boron-containing compounds have emerged as a large and versatile class of stimuli responsive materials. Based on several fundamental concepts of chemistry, researchers have come up with an admirable variety of boron-containing materials with AIE (aggregation-induced emission), mechano-responsive luminescence, thermoresponsive-luminescence as well as a number of purely organic phosphorescent materials and other standalone examples. The unique chemical as well as physical properties of boron-containing compounds are largely responsible for the development of such materials. In this review these new findings are brought together.