388 resultados para Copper compounds
Resumo:
The quenching of fluorescence of the free-base tetraphenylporphyrin, H2TPP, and its metal derivatives, MgTPP and ZnTPP by diverse iron(III) complexes, [Fe(CN)6]3−, Fe(acac)3, [Fe(mnt)2]−, Fe(Salen)Cl, [Fe4S4(SPh)4]2−·, FeTPPCl and [Fe(Cp)2]+ has been studied both in homogeneous medium (CH3CN) and micellar media, SDS., CTAB and Triton X-100. The quenching efficiencies are analysed in terms of diffusional encounters and it has been possible to separate static quenching components. The quenching constants are dependent on the nature of the ligating atoms around iron(III) and also on the extent of π-conjugation of the ligands. The quenching mechanism has been investigated using steady-state irradiation experiments. Evidence for oxidative quenching by iron(III) complexes was obtained, though the spin multiplicities of the excited electronic states of iron(III) complexes permit both energy and electron transfer mechanisms for quenching of the singlet excited state of the porphyrins.
Resumo:
A tripod ligand possessing two pyridine moieties and a phenolato group as pendants forms a mononuclear complex with an axial copper(II)–phenolate co-ordination in a square-pyramidal environment.
Resumo:
Diruthenium(II1) compounds, Ru20(02CAr)2(MeCN)4(PPh3)2(C104)(z1~) Hazn0d R U ~ O ( O ~ C A ~ ) ~(2() P(PA~r ~= )P~h,C6H4-p-OMe), were prepared by reacting R U ~ C I ( O ~ CaAnd~ P)P~h 3 in MeCN and characterized by analytical and spectral data. The molecular structures of 1 with Ar = Ph and of 2 with Ar = C&p-OMe were determined by X-ray crystallography. Crystal data for Ru~~(~~CP~)~(M~CN),(PP~(~la)):~ m(oCnIoc~lin,ic), n~/~cH, ~a O= 27.722 (3) A, b = 10.793 (2) A, c = 23.445 ( 2 )A , fi = 124.18 (l)', V = 5803 A3, and 2 = 4. Cr stal data for Ru~O(O~CC~H~-~-O(M2b~): )o~rth(orPhoPm~bi~c, )Pn~n a, a = 22.767 (5) A, b = 22.084 (7) A, c = 12.904 (3) 1, V = 6488 AS; and 2 = 4. Both 1 and 2 have an (Ruz0(02CAr)z2t1 core that is analogous to the diiron core present in the oxidized form of the nonheme respiratory protein hemerythrin. The Ru-Ru distances of 3.237 (1) and 3.199 ( I ) A observed in 1 and 2, respectively, are similar to the M-M distances known in other model systems. The essentially diamagnetic nature of 1 and 2 is due to the presence of two strongly interacting t22 Ru"' centers. The intense colors of 1 (blue) and 2 (purple) are due to the charge-transfer transition involving an ( R ~ ~ ( f i - 0m)o~ie~ty.) The presence of labile MeCN and carboxylato ancillary ligands in I and 2, respectively, makes these systems reactive toward amine and heterocyclic bases.
Resumo:
Three different complexes of copper (I) with bridging 1, 2-bis(diphenylphosphino)ethane (dppe), namely [Cu2 (mu-dppe) (CH3CN)6] (ClO4)2 (1), [Cu2 (mu-dppe)2 (CH3 CN)2] (ClO4)2 (2), and [Cu2 (mu-dppe) (dppe)2 (CH3CN)2] (ClO4)2 (3) have been prepared. The structure of [Cu2 (mu-dppe) (dPPe)2 (CH3CH)2] (ClO4)2 has been determined by X-ray crystallography. It crystallizes in the space group PT with a=12.984(6) angstrom, b=13.180(6) angstrom, c=14.001(3) angstrom, alpha=105.23(3), beta=105.60(2), gamma=112.53 (4), V=1944 (3) angstrom3, and Z=1. The structure was refined by least-squares method with R=0.0365; R(w)=0.0451 for 6321 reflections with F0 greater-than-or-equal-to 3 sigma (F0). The CP/MAS P-31 and IR spectra of the complexes have been analysed in the light of available crystallographic data. IR spectroscopy is particularly helpful in identifying the presence of chelating dppe. P-31 chemical shifts observed in solid state are very different from those observed in solution, and change significantly with slight changes in structure. In solution, complex 1 remains undissociated but complexes 2 and 3 undergo extensive dissociation. With a combination of room temperature H-1, Cu-63, and variable temperature P-31 NMR spectra, it is possible to understand the various processes occurring in solution.
Resumo:
The phase relations in the systems Cu–O–R2O3(R = Tm, Lu) have been determined at 1273 K by X-ray diffraction, optical microscopy and electron probe microanalysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only ternary compounds of the type Cu2R2O5 were found to be stable. The standard Gibbs energies of formation of the compounds have been measured using solid-state galvanic cells of the type, Pt|Cu2O + Cu2R2O5+ R2O3‖(Y2O3)ZrO2‖CuO + Cu2O‖Pt in the temperature range 950–1325 K. The standard Gibbs energy changes associated with the formation of Cu2R2O5 compounds from their binary component oxides are: 2CuO(s)+ Tm2O3(s)→Cu2Tm2O5(s), ΔG°=(10400 – 14.0 T/K)± 100 J mol–1, 2CuO(s)+ Lu2O3(s)→Cu2Lu2O5(s), ΔG°=(10210 – 14.4 T/K)± 100 J mol–1 Since the formation is endothermic, the compounds become thermodynamically unstable with respect to component oxides at low temperatures, Cu2Tm2O5 below 743 K and Cu2Lu2O5 below 709 K. When the chemical potential of oxygen over the Cu2R2O5 compounds is lowered, they decompose according to the reaction, 2Cu2R2O5(s)→2R2O3(s)+ 2Cu2O(s)+ O2(g) The equilibrium oxygen potential corresponding to this reaction is obtained from the emf. Oxygen potential diagrams for the Cu–O–R2O3 systems at 1273 K are presented.
Resumo:
The preparation of five different copper(I) complexes [CuSC(=NPh)(OAr)}L(n)]m (1-5) formed by the insertion of PhNCS into the Cu-OAr bond and the crystal structure analyses of three of them have been carried out. A monomeric species 1 (OAr = 2,6-dimethylphenoxide) is formed in the presence of excess PPh3 (n = 2, m = 1) and crystallizes as triclinic crystals with a = 12.419(4) angstrom, b = 13.298(7) angstrom, c = 15.936(3) angstrom, alpha = 67.09(3)-degrees, beta = 81.63(2)-degrees, gamma = 66.54(3)-degrees, V = 2224(2) angstrom3, and Z = 2. The structure was refined by the least-squares method to final R and R(w) values of 0.038 and 0.044, respectively, for 7186 unique reflections. Copper(I) 2,5-di-tert-butyl-4-methylphenoxide results in the formation of a dimeric species 2 in the presence of P(OMe)3 (n = 1, m = 2), where the coordination around Cu is trigonal. Crystals of 2 were found to be orthorhombic with a = 15.691(2) angstrom, b = 18.216(3) angstrom, c = 39.198(5) angstrom, v = 11204(3) angstrom3, and Z = 8. Least-squares refinement gave final residuals of R = 0.05 and R(w) = 0.057 with 6866 unique reflections. A tetrameric species 3 results when PPh3 is replaced by P(OMe)3 in the coordination sphere of copper(I) 2,6-dimethylphenoxide. It crystallizes in the space group P1BAR with a = 11.681 (1) angstrom, b = 13.373(2) angstrom, c = 20.127(1) angstrom, a = 88.55(l)-degrees, beta = 89.65(l)-degrees, gamma = 69.28(1)-degrees, V = 2940(l) angstrom3, and Z = 2. Least-squares refinement of the structure gave final values of 0.043 and 0.05 for R and R(w) respectively using 12214 unique reflections. In addition, a dimeric species 4 is formed when 1 equiv of PPh3 is added to the copper(I) 4-methylphenoxide, while with an excess of PPh3 a monomeric species 5 is isolated. Some interconversions among these complexes are also reported.
Resumo:
Unlike queens of typical primitively eusocial species, Ropalidia marginata queens are docile and non-interactive, and hence cannot be using dominance to maintain their status. It appears that the queen maintains reproductive monopoly through a pheromone, of which the Dufour's gland is at least one source. Here, we reconfirm earlier results showing that queens and workers can be correctly classified on a discriminant function using the compositions of their respective Dufour's glands, and also demonstrate consistent queen-worker differences based on categories of compounds and on single compounds also in some cases. Since the queen pheromone is expected to be an honest signal of the fecundity of a queen, we investigate the correlation of Dufour's gland compounds with ovarian activation of queens. Our study shows that Dufour's gland compounds in R. marginata correlate with the state of ovarian activation of queens, suggesting that such compounds may portray the fecundity of a queen, and may indeed function as honest signals of fertility.
Resumo:
N,N',N `'-Tris(2-anisyl)guanidine, (ArNH)(2)C=NAr (Ar = 2-(MeO)C6H4), was cyclopallaclated with Pd(OC(O)R)(2) (R = Me, CF3) in toluene at 70 degrees C to afford palladacycles Pd{kappa(2)(C,N)-C6H3-(OMe)-3(NHC(NHAr)(=NAr))-2}(mu-OC(O)R)](2)(R = Me (1a) and CF3 (1b)) in 87% and 95% yield, respectively. Palladacycle 1a was subjected to a metathetical reaction with LiBr in aqueous ethanol at 78 degrees C to afford palladacycle Pd{kappa(2)(C,N)-C6H3(OMe)-3(NHC(NHAr)(=NAr))-2}(mu-Br)](2) (2) in 90% yield. Palladacycle 2 was subjected to a bridge-splitting reaction with Lewis bases in CH2Cl2 to afford the monomeric palladacycles Pd{kappa(2)(C,N)-C6H3(OMe)-3(NHC(NHAr)(=NAr))-2}Br(L)] (L = 2,6-Me2C5H3N (3a), 2,4-Me2C5H3N (3b), 3,5-Me2C5H3N (3c), XyNC (Xy = 2,6-Me2C6H3; 4a), (BuNC)-Bu-t (4b), and PPh3 (5)) in 87-95% yield. Palladacycle 2 upon reaction with 2 equiv of XyNC in CH2Cl2 afforded an unanticipated palladacycle, Pd{kappa(2)(C,N)-C(=NXy)(C6H3(OMe)-4)-2(N=C-(NH Ar)(2))-3} Br(CNXy)] (6) in 93% yield, and the driving force for the formation of 6 was ascribed to a ring contraction followed by amine-imine tautomerization. Palladacycles 1 a,b revealed a dimeric transoid in-in conformation with ``open book'' framework in the solid state. In solution, 1 a exhibited a fluxional behavior ascribed to the six-membered ``(C,N)Pd'' ring inversion and partly dissociates to the pincer type and kappa(2)-O,O'-OAc monomeric palladacycles by an anchimerically assisted acetate cleavage process as studied by variable-temperature H-1 NMR data. Palladacycles 3a,b revealed a unique trans configuration around the palladium with lutidine being placed trans to the Pd-C bond, whereas cis stereochemistry was observed between the Pd-C bond and the Lewis base in 4a (as determined by X-ray diffraction data) and 5 (as determined by P-31 and C-13 NMR data). The aforementioned stereochemical difference was explained by invoking relative hardness/softness of the donor atoms around the palladium center. In solution, palladacycles 3a-c exist as a mixture of two interconverting boat conformers via a planar intermediate without any bond breaking due to the six-membered ``(C,N)Pd'' ring inversion, whereas palladacycles 4a,b and 5 exist as a single isomer, as deduced from detailed H-1 NMR studies.
Resumo:
The present research work reports the eosin Y (EY) and fluorescein (FL) sensitized visible light degradation of phenol, 4-chlorophenol (CP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) using combustion synthesized nano-TiO2 (CS TiO2). The rate of degradation of the phenolic compounds was higher in the presence of EY/CS TiO2 compared to FL/CS TiO2 system. A detailed mechanism of sensitized degradation was proposed and a mechanistic model for the rate of degradation of the phenolic compound was derived using the pyramidal network reduction technique. It was found that at low initial dye concentrations, the rate of degradation of the phenolic compound is first order in the concentration of the dye, while at high initial dye concentrations, the rate is first order in the concentration of the phenolic compound. The order of degradation of the different phenolic compounds follows: CP > TCP > DCP > phenol. The different phenolic and dye intermediates that were formed during the degradation were identified by liquid chromatography-mass spectrometry (LC-MS) and the most probable pathway of degradation is proposed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Mononuclear copper(II) complexes of tri- and tetra-dentate tripodal ligands containing phenolic hydroxyl and benzimidazole or pyridine groups have been isolated. They are of the type (CuL(X)].nH2O, [CuL(H2O)]X.nH2O or [CuL].nH2O where X = Cl-, ClO4-, N3- or NCS- and n = 0-4. The electronic spectra of all the complexes exhibit a broad absorption band around 14000 cm-1 and the polycrystalline as well as the frozen-solution EPR spectra are axial, indicating square-based geometries. The crystal structure of [CuL(Cl)] [HL = (2-hydroxy-5-nitrobenzyl)bis(2-pyridyl-methyl)amine] revealed a square-pyramidal geometry around Cu(II). The mononuclear complex crystallises in the triclinic space group P1BAR with a = 6.938(1), b = 11.782(6), c = 12.678(3) angstrom and alpha = 114.56(3), beta = 92.70(2), gamma = 95.36(2)-degrees. The co-ordination plane is comprised of one tertiary amine and two pyridine nitrogens and a chloride ion. The phenolate ion unusually occupies the axial site, possibly due to the electron-withdrawing p-nitro group. The enhanced pi delocalisation involving the p-nitrophenolate donor elevates the E1/2 values. The spectral and electrochemical results suggest the order of donor strength as nitrophenolate < pyridine < benzimidazole in the tridentate and nitrophenolate < benzimidazole < pyridine in the tetradentate ligand complexes.
Resumo:
Factors contributing to the variations in the Cu(I)-Cu(I) distances in two clusters with identical ligand and coordination geometries have been analyzed. While the hexamer, 4, exhibits metal-metal distances in the range 2.81-3.25 Angstrom, shorter contacts are found in the corresponding tetramer, 3 (2.60-2.77 Angstrom). EHT calculations reveal relatively little attractive interactions in the corresponding Cu-4(4+) and Cu-6(6+) cores. Introduction of the ligands lowers the reduced overlap populations between the metals further. MNDO calculations with model electrophiles have been carried out to determine the bite angle requirements of the ligands. These are satisfactorily met in the structures of both 3 and 4. The key geometric feature distinguishing 3 and 4 is the Cu-S-Cu angle involving the bridging S- unit. In 4, the corresponding angles are about 90 degrees, while the values in 3 are smaller (70-73 degrees). Wider angles are computed to be energetically favored and are characterized by an open three-center bond and a long Cu-Cu distance. The bridging angles are suggested to be primarily constrained by the mode of oligomerization. Implications of these results for the stability and reactivity of these clusters and for short metal-metal distances in d(10) systems in general are discussed.
Resumo:
A strain of Thiobacillus ferrooxidans MAL-4-1 was adapted to grow at higher concentrations of copper by repeated subculturing in the presence of increasing levels of added cupric ions in 9K medium. The strains adapted to copper were found to be more efficient in bioleaching of copper from concentrates. When copper tolerant strains were back cultured repeatedly in 9K medium without cupric ions, the initially developed metal tolerance was observed to be lost. This indicates that the copper tolerance developed is stress-dependent and not a permanent trait of the adapted strain.
Resumo:
Sparingly soluble neodymium copper oxalate (NCO) single crystals were grown by gel method, by the diffusion of a mixture of neodymium nitrate and cupric nitrate into the set gel containing oxalic acid. Tabular crystal, revealing well-defined dissolution figures has been recorded. X-ray diffraction studies of the powdered sample reveal that NCO is crystalline. Infrared absorption spectrum confirmed the formation of oxalato complex with water of crystallization, while energy dispersive X-ray analysis established the presence of neodymium dominant over copper in the sample. X-ray photoelectron spectroscopic studies established the presence of Nd and Cu in oxide states besides (C2O4)(2-) oxalate group. The intensities of Nd (3d(5/2)) and Cu (2p(3/2)) peaks measured in terms of maximum photoelectron count rates also revealed the presence of Nd in predominance. The inductively coupled plasma analysis supports the EDAX and XPS data by the estimation of neodymium percentage by weight to that of copper present in the NCO sample. On the basis of these findings, an empirical structure for NCO has been proposed. The implications are discussed.